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FOREWORD

The radar cross sections of modern aircraft and aerospace vehicles
are greatly influenced by the jet engine configurations. However,
the prediction and interpretation of electromagnetic wave interactions
with open cavities housing realistic jet engine configurations presents
a perverse challenge to the electromagnetic theorist. No single study
can possibly address all aspects of the problem. While some approximate
low and high frequency results are also given, emphasis in this report
is concentrated over a frequency span where the cavity aperture is
of resonant dimensions, on a circular aperture and on an approach to
reasonably realistic engine models.

T. W. Johnson is a Captain in the United States Air Force and
attended the Ohio State University under the Air Force Institute of
Technology's Civilian Institution Program. Some of the material in
this report was also used as a dissertation submitted to the Department
of Electrical Engineering, the Ohio State University as partial fulfill-
ment of requirements for the degree Doctor of Philosophy. Computational
funding was provided by the Department of Electrical Engineering.

The results were felt to be of sufficient interest to warrant report
publication and report preparation funding was provided by the Joint
Services Electronics Program.
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CHAPTER I
INTRODUCTION

The radar cross section (RCS) of jet intakes has been extens-
ively studied. There are several reasons that it is of interest.
One is simply that it is a major element in the radar cross section
of aircraft and must be accurately evaluated to estimate total air-
craft RCS. Another reason for study is that potentially the RCS
of the aircraft could possibly be reduced if the scattering mech-
anisms are well understood. A third (though certainly not final)
reason is that many aircraft identification or classification tech-
niques propose to use modulation of the radar return imposed by the
aircraft engine as a significant identifiable feature. It would
be a questionable approach to establish such a system on an effect
which is not well understood, particularly in terms of establishing
the system's susceptibility to intentional confusion or camouflage.

This study is somewhat limited to the region for which Brx;
the asymptotic forms developed for higher frequencies may fail in
this region, and the very low frequency techniques (for which little
or no energy penetrates the intake) are invalid.

This study develops two of the practical problems involved
in calculating the RCS. The coupling coefficients at the mouth of
the intake are known in principle, but difficult to compute in prac-
tice. The effect of the engine structure is known only generally,
and has been very loosely approximated in past studies.

The jet intake can generally be modeled as an open ended wave-

guide with an obstacle (the engine) some distance down the wavequide.

Figure 1-1 illustrates the geometry. The problem can then, in
principle, be solved by the generalized scattering matrix technique.
The scattering matrices of the significant scatterers, if known,

can be self-consistently manipulated to produce the backscattered
field. Let

u' represent the incident field,

bs

[s1:]

it

the backscattered field,

a matrix, representing (in some sense) the direct
backscatter of the open waveguide
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[S]?] = radiation characteristics of waveguide modes

[S?‘] = coupling matrix of incident field to wavequide modes
[S??] = reflection of waveguide modes from the open end

[Sb ] = reflection of wavequide modes from the obstacle
[TZb] = transmission down wavegquide

[Tb?] = transmission back from waveguide to aperture.

Note that off-diagonal terms in each transmission ard reflection
matrix will represent mode conversion from one mode to another.

From Fiqure 1-1 we can easily show that:

bs i
u = S]'u + S]2r2 (-1
~ i
r - 82]u + S??r2 (1-2)
T2 % Ty Sp Top M (1-3)
~ j
"2 7 Tha Sp Tap (Soqv * Saara) (1-4)
[I ThoS5To6522172 = Too S TopS274" (1-5)
-1 _ j
(TS - 5, ]‘”2 * Spyu (1-6)
rp = (1 sr)’-s]"s ! 17
2 b27b ' ?b 22 21
bs _ 1 -1 i /
WS =4Sy ¢ Sy, (TS Tap) T - S 521}” (1-8)
The matrices S , and S have been solved for by the Wiener-
Hopf terhnlquo ThAge rglults are qu1te complicated algebraically,

The heart of the problem, however, is calculation of the Wiener-Hopf
factorization functions. Considerable effort has been given to cal-
culating these functions, which is presented in Appendix A. This
study has emphasized circular waveguides, because much prior work

has been done in the area, and the symmetry of the geometry simplifies
the problem somewhat. Also, since engine geometries are circular,
non-circular inlets require an additional model of the mode conver-
sion as the energy travels down a waveguide of varying cross-section.
Thus our matrices T,, and T are diagonal, having only the relevant
phase delay for eacR mode, ?his study does not address further
development of this effect for non-uniform waveguides.




Summary of Circular Waveqguide Modes

Propagation in a circular waveguide is limited to a discrete
set of modes, which can propagate only for waveqguide diameters larger
than a certain minimum {cutoff) diameter. The notation used in this
study is consistent with Harrington: Tk, refers to u mode with
electric field transverse to the axis of propagation. In the Russian
literature (Weinstein) this is referred to as a magnetic mode, since
it has a z-directed magnetic field, and all other field components
can be simply derived from it.

The number of modes that can propagate in a circular waveguide
qoes roughly as the square of the diameter. Table 1-1 lists the first

TABLE 1-1

SUMMARY OF LOW-ORDER CIRCULAR WAVEGUIDE
MODES AND CUTOFF FREQUENCIES

Mode cutoff % cutoff ka
TETI .5861 1.8412
™G . 7655 2.4048
TE21 .9722 3.0542
AR 1.2197 3.8317
TEO 1.2197 3.8317
TE3I 1.3373 4,2012
™21 1.6347 5.1356
TEA] 1.6926 5.3176
TEI? 1.A970 5.3314
™07 1.7571 5.5201
™31 2.0309 6.3802
TEH L 2.0421 6.4156
[e?? 2.1346 6.7061
TEO? 2.21331 7.01486
MI1? 2.7331 7.0156
TE6I 2.3877 7.5013
™A1 2.4154 7.5883
TE3? 2.5513 8.0152
T™M2? ?2.6793 8.4172
TE13 2.7172 8.5363
TE71 2.7304 8.5778
TMO3 2.7546 8.6537
™51 2.7921 8.7715
TE4? 2.9547 9.2824
TEBI 3.0709 9.6474
TM3? 3.1070 9.7610
T™6 1 3.1628 9.9361
TE?3 3.1734 9.9695




28 modes in order of increasing cutoff diameter. The cutoff is cal-

culated by noting the Jn(Jnm)=0 or Jé(Jam)=0 and then ka=Jnm or

2u D _ D

! Since ka - Sy the cutoff in terms of ka can be simply

Jom- )2
derived. 1L seems more intuitive to discuss D/x. Figure 1-3 presents
clectric field line pictures for the first few modes.

This study employs the gt time convention; the choice is
necessary for consistency with the vast majority of Weiner-Hopf
literature (Einarsson et al). The coordinate system chosen will
be standard spherical and/or cylindrical coordinates, with the
origin at the center of the waveguide mouth. See Figure 1-2. The
polar angle is 9, the azimuthal angle ¢. The radius will be desig-
nated by r, in spherical coordinates, and p in cylindrical coordin-
ates. The waveguide radius is a, and the waveguide extends from
2=0 to z=-= at p=a.

Since a large part of the Titerature is concerned with the
Weiner-Hopf solution to scattering by a semi-infinite circular
cylinder, an heuristic description will be presented here. Tutorial
discussions of the Weiner-Hopf technique can be found in [Noble (1958']
and [Morse and Feshback (1953)17.

The Weiner-Hopf technique is based on the fact that the Fourier

transform of a causal function is entire in a half plane. For example,
the function

x(t) =)e” t >0
0 t <0 (1-9)

has the Fourier transform

X(w) = [ et ¢ 0 yrpy gp = [ elTwmalt g
-n 0
_ ] - (o o] _ ]
- i’ih)—l’!y [e - e] T a-iw (]-]0)

[Recall that we are using e_]mt time dependence]. Hence X{w) has

a single pole at w = - ia and is entire (has no poles) for Im(w)>0>-ia,
In the Weiner-Hopf technique, the Fourier transform of the field
component is taken with respect to the coordinate along one axis

of the problem (the axis parallel to the semi-infinite object).

The incident and scattered field are then related by means of the

e i el
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Figure 1-3. Electric field lines for TE modes
in circular waveguide.
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Figure 1-3 (continued). Electric field lines for
TM modes in circular waveguide.




physics of the problem. Noble cites three different techniques

for doing Lhis: field matching, Green's function integral equation,
and dual integral equations. The resultant equation is manipulated
so that the left-hand side must be entire in one half-plane and the
right-hand side in the other half-plane, with a region of overlap.
These are then equated to a third function, which must be entire
over the whole g-plane. Because of Liouville's Theorem, this new
function ends up being a constant, equal to zero. This separately
sets each side of the equation to zero, which leads to the solution
(by taking the inverse Fourier transform),

For the cylinder scattering problem, the incident field is
decomposed into cylinder waves by the Bessel function addition
theorem. The transform is taken with respect to the z-axis:

a

e(a,r,g) = f E(z,r,¢)e—iaz dz . (1-11

-00

For each cylinder wave, the incident and scattered fields are related
by mposing Lhe boundary conditions that the tangential electric
field must vanish at the cylinder walls, and the surface current

must vanish in free space. These are used to manipulate the problem
into a Weiner-Hopf form. This process is described by [Wrinstein
(1969) and Einarsson et al (1966)].

The analysis of interactions at the mouth of an open waveaquide
goes back to [Chu (1940)]. By using the Kirchoff approximation the
radiation fields for the lowest order propagating modes for a cir-
cular, and a rectangular waveguide are calculated. In terms of the
GSMT, this would enable us to compute elements of [Sy2].

[Levine and Schwinger (1948)]evaluate the acoustic radiation
and reflection characteristics of a hollow circular pipe. An
integral equation for the velocity potential is solved via the Weiner-
Hopf technique. Their study is confined to symmetrical modes incident
on the open end of the pipe. 1In a circular acoustic waveguide,
the symmetrical modes are given by

(p,0) = Jo(Jg mo/a) or I (J,pe/a) (1-12)

where

Jom are the zeroes of Jo(x)

Jom are the zeroes of Jé(x)




CHEERER

[Pearson (1953)7 was the first to apply the Weiner-Hopf technique
to the clectromagnetic problem.  He considers a transverse magnetic
plane wave incident on the open end, and obtains equations for the
Laplace transtorms of the axial and azimuthal currents on the waveguide
walls. These equations are then solved by the Weiner-Hopf techniques,
and the currents can he obtained by inverse Laplace transform. The
fields far from the mouth down the pipe are then evaluated asymp-
totically and found to result from propagating modes, thus giving
the coupling coefficients. The backscattered fields are not evalu-
ated, nor is the behavior near the mouth studied.

[Jones (1955)] analyzes the scattering of sound waves by a
solid semi-infinite cylinder. He considers both hard and soft boundary
conditions although numerical results are evaluated for only the
hard (du/dn=0) case. An approximation for high frequency (large
diameter) is developed, and a low frequency expression is presented.
A variational expression is developed to establish limits of error
on the approximations used in evaluating the exact expressions.

Both the pressure field on the cylinder, and the scattered far field
are evaluated. The end cap pressure time response due to an incident
unit step is evaluated by taking the inverse Laplace transform of

the frequency domain response,

[Noble (1958)] treats the scalar problem for both radiation of
the towest order mode, and coupling of an incident plane wave to
the Towest order mode in a circular waveguide. His discussion is
tutorial in nature, drawing somewhat from Jones' work. There is
a more complete treatment of the general technique used to solve
Weiner-Hopf problems than is found in most other references.

[Jones (1964)] applies the Weiner-Hopf technique to radiation
from a semi-infinite hollow pipe. This study is somewhat tutorial
in nature, being part of a textbook, and considers only a few of
the lowest order modes. Jones notes that TE modes radiate more
efficiently than TM modes. TM modes have higher reflection coef-
ficients at the cpen end of the pipe,

[Finarsson et al (1966)1 give an exhaustive study of diffraction
hy both the infinite and semi-infinite circular cylinder. The back-
scatter for a plane electromagnetic wave incident on a solid, semi-
infinite, perfectly conducting rod is given. The scalar (sound)
scattering from a semi-infinite (both solid and thin walled) tube
is evaluated. The radiation and reflection for a propagating scalar
wave incident on an open end are evaluated (reproducing the results
of Levine and Schuinger and also Weinstein). There is a brief dis-
cussinn of finite cylindrical resonators with one end open, one end
closed {rigid, Dirchlet boundarv condition).

10




The general solution for scattering of a plane electromagnetic
wave from a semi-infinite thin walled, perfectly conducting tube
occupies about half the report. This includes both the backscatter
far-field [Syy] and coupling coefficients, for the general plane
wave (neither TE nor TM). The special case of axial incidence is
considered. Radiation from a source inside the tube [52]] and re-
flection from an open end [Sy,], are evaluated, largely copied from
Weinstein., Asymptotic radiation of the far-fields is compared to
the Kirchoff approximation.

A substantial part of this study concerns evaulation of the
Weiner-Hopf factorization functions. A number of forms of integral
expressions which exactly define them are developed. Power series
approximations to the low freguency are developed. Unfortunately
these expressions are still quite complex.

In addition, only the magnitude of the functions is approxi-
mated; the phase is not. A large effort to develop high frequency
approximation yields some useful simpiifications, but the results
are expressed in terms of another unknown function, albeit much
simpler. Numerical data is given for varying values of ka with the a
parameter fixed. This,is inconvenient since, generally, o=kcos?,
and we are primarily interested in fixing ka and varying a. Experi-
mental data are presented for finite cylinders. No experimental
data are presented for a semi-infinite cylinder.

[Witt and Price (1968)] analyze the problem of a finite tube
without recourse to Weiner-Hopf techniques. Instead, the direct
backscatter from the rim, and the coupling coefficients to wavequide
modes are calculated by what amounts to the Kirchoff approximation,
The incident field tangential to the aperture is expanded as a sum
of wavequide modes, and a waveguide admittance for each mode is com-
puted. The reradiation is also calculated via the Kirchoff method,
using the Stratton-Chu integral. The termination is modeled as an
impedance, which results in a simple (scalar) reflection coefficient.
The reflection coefficient is then transformed to its equivalent
impedance as seen at the mouth of the waveguide. The total waveguide
admittance for that mode is then calculated, and the scattered field
is expressed as a sum over the waveguide modes, times the incident
field projection on that mode, times the generalized admittance.

For backscatter with vertical polarization (TE) (which carres-
ponds to our ¢ polarization) they present the formula

2 A
ES(x',0,2') = - K2 €050 o-Jkr
(1-13)
vy vy ) + § ; e (VIE (v (15T ) (} * jkCOS”)
B v v CAAMISS-
volv+v;7' nfo mer nm mm* o nm Yo

s

i
i




where

Vo = kasinO0 (incident)

v = kasing (scattered)

Enm = weighting coefficient for nm-th mode

Yom = propagation coefficient for nm-th mode

P = reflection coefficient seen at aperture for nm-th mode.

The work of Weinstein* in many cases predates the works reviewed
here.  However, most of Weinsteins's papers were published in Russian
Journals. His book [Weinstein {1969)] contains virtually all of
his earlier work, and is readily available. 1Tt should simply be
noted that Weinstein's work did frequently predate work in the West.

[Weinstein (1969)7] has collected all of his earlier work on the
Wiener-Hopf technique into a single volume. The book is tutorial
in nature, beginning with the simplest problem, diffraction and
radiation by a plane parallel plate waveguide. Having developed
the basic Wiener-Hopf arguments, he proceeds to analyze circular
wavequides, first considering only symmetrical modes (to eliminate
azimuthal dependence from the problem). Acoustical problems are
then solved, followed by the general problem for electromagnetic
waves scattered and radiated by a semi-infinite circular cylinder,
including azimuthal dependence. Comparisons with answers obtained
via the Kirchoff method are frequent, showing those circumstances
under which the Kirchoff method works and those under which it fails,
There is a substantial discussion of the relative accuracy of Huygens
principle, compared with edge diffraction; a substantial point is
made that edge diffraction yields more reliable answers.

[Kao (1970)7 presents a completely novel approach to scattering
from cylinders. He determines the currents on finite cylinders by
using point matching and then calculates radiation patterns from
the currents. For the semi-infinite cyiinder [1970b1 he sets up
two sets of points with slightly different interpoint spacing. By
various manipulations of these, he determines the magnitude of the
traveling wave ltaunched on the cylinder by the incident piane wave,
as well as the current in the vicinity of the aporturg However,
his analysis is confined to broadside incidence (N-=90

[Bowman (1970)] develops ray-optical diffraction expressions
for the scattering from the end (aperture) of the semi-infinite wave-
quide, and compares these with an asymptotic approximation to the

“Lio teanatgted o as Vainshteiin, Wainstein, Vainshteir,
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cxac . Weiner-Hopf solutions. For the asymptotic form of the Wiener-

Hopf wolulion, he obtains, for direct backscatter (0=0)
. . in/§ o .
85 % ;F plkr {8 ) M q=372 jiemka (1-14)
vﬁig m=1

whereas by ray optical methods, he obtains

v [ gia e m iomka

BS 2 a
S - X 5= € 1+ Z ST I (1-15)
2r L /ika m=1 2™ 'm

E

For bistatic scattering with axial incidence he obtains from approxi-
mating the Wiener-Hopf solution letting his @ go to n-8 and his ¢
to 2n-¢

s N 2a \V/? cos(kasing-n/4)(sing)
7ksing cos(6/2)

in/4 2 o . 1
1+ & cos gg/Z) 7" n-3/2 gi2mka (1-16)
/nka co m=1 J

From the ray optical approximation he obtains

s . oikr 2a /2 cos(kasin6-n/4)
£E° v + ¢ — me> COSG]Z

sing

81"/4 cosz(G/Z) © .m e12mka

1 +
/e cosh Ly omT o

(1-17)

-1/2)

In both cases it is seen that the term of O(ka is identical

up to the first two terms in the summation
ie12ka 1.2841ka 1.3e16ka

+ + (1-18a)
1 23/2 33/2

VS
iei?ka 1-2ei4ka i3ei6ka
T F 372 *
2 4/3

(1-18b)




He atiributes this difference to the ray-optical approach, for which
he first considered scattering by plane parallel plates; multiple
scattering was effected by assuming a cylinder wave was generated
from each edge after scattering. This result was then specialized
to having a single point participate in the scattering on each edge
but not modified to take account of the fact that a cylindrical wave
is no Tonger being emanated from each edge. Beyond this comment,
Bowman does not analyze further, since the exact result from the
Weiner-Hopf solution instructs us how to modify the ray-optic con-
tribution.

A comparison of Bowman's results with those of Witt and Price
is illuminating. If we restrict ourselves to on-axis backscatter
and disregard terms due to reflection from the termination, the
formula presented by Witt and Price reduces to

-

L2 ® ]
S _ Jka -jkr} 1 2 r
EX = - e 7+ (v)
r 2 nZO mgl nm J
= -jka gF e—‘]kr 1+ Z Z Enm(v)zl (1-19)
n=0 m=1 )

We observe that, besides the opposite time convention, there is an
additional factor of jka present in the form presented by Witt and f
Price. They remark that this is recognizahle as the physical optics
approximation for scattering from a flat conducting disk. Since
this is not in agreement with the high frequency behavior of the
Weiner-Hopf solution, we conclude that the disk is not a good high
frequency model for this problem. In fact, it will be seen later
that the disk does adequately model the on-axis scattering of a
cylinder terminated by a perfectly conducting plate.

[Mol1 and Seecamp (1970)] present a more realistic model of
the engine geometry. The approach of Witt and Price is used to model
the scattering, coupling, and radiation at the duct inlet. The study
is confined to TE modes. The termination, however is modeled by
two sets of blades, each as shown in Figure 1-4, to simulate the
first stage of a compressor. The blades are modeled as being planar
(normal to the z axis). The two sets of blades had different numbers
of blades and blade widths and assumed varying relative orientations
(stator to rotor). The scattering at the termination is modeled
by a similar procedure to that at the inlet. The backscattered field :
is oxpressed as a sum of modes traveling toward the mouth. The total :
tangential electric fields must match at points where there are i
blades. For each incident mode, integrals were taken over the area
covered by either set of blades, forcing the fields to vanish,
The equations thus obtained are used to solve for the scattering
coefficients for modes generated at the termination. Then, the

14







! radiation from each mode is computed by matching the radiated field

) plus the incident field to the internal field at the duct aperture,
where the internal field is the sum of the modes traveling down the
wavequide plus those scattered back by the termination. The RCS

is computed for various orientation of the blade structure and various
relative orientations of the two bladed structures, giving a range

of modulation of the RCS caused by the rotor motion. They used 31

and 37 blades on the respective blade structures. There is a brief
discussion of a non-planar cap in the duct termination, but the idea
is not developed.

[Lee et al (1973)] are primarily concerned with the measurement
errors made when field strength is measured with a sensor boom.
The effect of the presence of the boom is analyzed via the Wiener-
Hopf technique, and the relative distortion thus introduced is cal-
culated. The relevant part of this paper deals with the calculation
1 of the Wiener-Hopf factorization functions. Although the general
factorization expression is developed (as an infinite product of
factors), the general expression is clearly too complex to be useful,
A low frequency form is developed for the n=1 case for both L+ and
M+ functions. The n=1 case is relevant to low frequencies because
1 the TEyy mode has the lowest cutoff frequency, hence is also the
slowest decaying evanescent mode when all modes are cut off., Un-
fortunately the low frequency expression presented do not appear
to fit very well with data computed in this dissertation by numerical
integration of the exact integral defining the functions.
(Lee et al) indicate a constant phase for the low frequency, but
it appears that the phase varies rather rapidly as the frequency
increases from D.C. The formulas do work out to the correct "DC"
form.

[Mittra et al (1974)1 present a detailed report which includes
reconciliation of the numerical solution with experimental data.
The complete Wiener-Hopf solution for the semi-infinite cylinder
is presented. There appear to be some errors in the results presented,
since the scattering coefficients for direct backscatter (Equation
(3-86)) could not be reconciled with those presented by [Bowman (1970)7;
also the two direct polarization solutions for Sgg and Sy, do not
reduce to the same answer on axis, nor do they reduce to the answer
given by [Einarsson ot a1(1966)] for on axis backscatter (Equation
(5-63)). The solution for large pipes is simplified by an asymp-
totic approximation for the L+ and M+ functions; these are expressed
as functions of the series

'}’ n-3/2 im(2ka-nmem/2)

. (1-20)
m=1

and the same summation, including either even terms or odd terms.
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The Generalized Scattering Matrix Technique (GSMT) is used
to formulate the problem. Considerable effort is expended expressing
the individual elements of the matrix in terms of the Wiener-Hopf
solution.

Solutions for other geometries are developed by the ray-optical
method.  The geometries considered are an ellipsoid, elliptical plate,
and semi-infinite elliptical cylinder. The semi-infinite elliptical
cylinder i< analyzed in terms of diffraction by the edge of the
cylinder,

These solutions are then combined to estimate the total Rio
tor an aireraft.  Numerical results were computed for selected fixed
frequencies for two aircraft. For calculations involving a termination
in the jet intake, this was modeled earlier as a perfect conductor,
or as a dielectric plug of infinite depth, or as a dielectric plug
of finite depth.

[Chuang et al (1975)] present an extension of the report by
[Mittra et a1 (1973)]. Starting with the exact solution for bistatic
scattering from a semi-infinite pipe, they develop approximate high
frequency expressions for the factorization function, based on an
asymptotic evaluation of the integral defining these functions.

Both factorization functions can be rather simply expressed in terms
of a third function, called a modified Lerch function of order 3/2,

g - )
L(X,V) - >‘ m v e]gﬂmx (]_2])
m=1

They then derive via the Mellin transformation a twelve-term series
representation with complex coefficients, which enables the compu-
tation of this function for v = 3/2 to be mechanized trivially.

The results thus obtained show excellent agreement with results ob-
tained by direct numerical integration of the defining integral,

down to the cutoff freguency of the lowest mode of that order. Finally
there is a simplification of the infinite sum which is present in

the scattering calculation mode by use of the asymptotic form with

one of the Bessel function addition theorems.

There appear to be a few errors in this paper. These are summar-
ized in Appendix B.

[James and Greene (1978)] indicate that both theoretical and
experimental results show substantial sensitivity to wall thickness.
They indicate that the exact Wiener-Hopf solution based on infinitely
thin walls breaks down when the wall thickness is larger than .0TA.
The results of their summary seems to be that the radiation patterns
of thick walled pipes are narrower than given by the Wiener-Hopf
solution. Beyond noting this effect, we will not further discuss
this problem, since it would require an entirely separate study.
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CHAPTER 11 ‘
DISCUSSION OF WIENER-HOPF SOLUTION

The exact Wiener-Hopf solution to the diffraction by a semi-
infinite circular waveguide can be found in [Einarsson et al (1966) 1.
The significant formulas from this report are summarized in Appendix
B. The major numerical problem -- that of calculating the factori-

zation functions -- is discussed at length in Appendix A. This chapter
discusses the physxcal gwgnificance of some of these formulas. We
reiterate that the e time dependence is assumed and suppressed.

The coordinate system is a substantial stumbling block since
the incident and scattered field are defined with respect to § and &
unit vectors which are themselves functions of angle. Further com-
plicating matters, [Einarsson et al (1966)] and [Mittra et al {1974)]
use different coordinate systems. This study uses the coordinate
systom illustrated in Figure 2-1, which is the same as [Mittra et
al {1974)7, since it forms a self-consistant reference for scattering
calculations.

The incident field is assumed to come from the angle ¢.=7.
Looking in along the y-axis toward the origin, we see Figure 2-2.
Looking in along the x-axis toward the origin we see Figure 2-3.
Hence we obtain the following unit vectors.

A=-x coso; - z sing, (2-1a)

-y . (2-1b)
For the scattered field, we are not necessarily constrained to bg=m
(for bistatic scattering). Hence, we obtain general formulas for
the unit vectors.

R

A +/\ . _A, -
X COSA . COS, + ¥y COSO. sing, - Z sind (2-23)

- X sing, + y cosg, - (2-2b)

<
"

In our coordinate system, the incident and scattered fields are in i
the same coordinate system. 1In [Einarsson et al (1966)], the direction oo
of the z-axis is reversed, but Gi and the unit vectors for the inci- !
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Figure 2-1. Coordinate system for Wiener-Hopf solution
to semi-infinite cylinder.
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Tigure 2-3.

Coordinate system looking at origin from
positive Y-axis.
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Coordinate system looking at origin from
positive X-axis.
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dent field are defined in such a way that they physically point in
. . ) . BN B
the same divect jon as in our system.  Thus coso ., Sin0,, [(‘, f‘ dre
Bl
all the <ame in Linarsson's and our coordinate systems. (See Figure

?2-2 in Einarsson; E; occurs for g=0, E' for R = % with o being re-

placed by 0.). In the scattered coordinate systems, § and § are i
reversed in sign (hence also EO and £,), and cos0_ has the opposite '
sign, but sino_ is unchanged. "In add?tion d. 1s ?eplaced by b

since the x-ax1s is the same in the two systéms.

A. On-axis Results

The most elementary case of the Wiener-Hopf solution can be ‘
found by taking the limit as 6+0. In taking this Timit we will :
consider both the backscatter and coupling of energy into the wave- :
quide.

Taking the 1imit of Equation (B-3) (which gives the general
bistatic scattering from the rim for 8 incident and scattered
fields) with b=, 01:05:6 (in the limit &0) we obtain

r
!
0 F\ 2 ? j ;
Sgp © 1im T e (-D)" 12;?('!3_5)]’2_ [iﬁ_? -3‘—2—‘ (2-3) !
50 n=0 5 LL+(k)} Tof
where
€, = Neumann epsilon = 1;n=0
= 2;n#0
Jn() is the cylindrical bessel function of the first kind
k is the wavenumber = g%

a 1is the pipe radius.

L+, M+ are the factorization functions; these are functions
of (n,n,k); k is always understood and n is usually
obvious from the context. Hence the only argument that
is explicitly given is a. L+(k) means L+(n,a=k,k)

f = nL+(k)/2kaM+(k)

n
2
. o 2n f
_ -2i Zi-l)n(k §) n
S.. = lim ¥ (2-4a)
0 520 k6% nZ1 29" L4(k) -2
2i 2(-1)(ka)? i
- 2l 2Clka) 1 (2-4b)
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.7
) _iak (n=1 understood) (?-4c)

SN .
a7 a M () =L (k)7
since fo is identically 0.

When combined with Equation (B-2), we obtain

S ikr . 2
ET =& — . ']g ; > 5 (n=1 understood) (2-5)
E 4k“a“M+(k)<-L+(k)

This can be seen to be the same as Equation (5-163) of [Cinarsson
(1966) with r-z; the same procedure applied to Sgg (which gives

the general bistatic scattering from the rim for ¢ incident and scat-
tered fields) leads to exactly the same result.

n [Jﬁ(kaé)]z 2.2 fﬁ \

Y
S .= lim yoe (- = A s N o6
Mgy T a5 O RN TN Y
(1/2)° f
2i 172
= g 2(=1) {1 + (2-6b)
* ()2 | 1R
-j
) (2-6c)
akM+ (k) (1-£%)
.
- 212k (n=1 understood) (2-6d)

k% a2Me (k) 2-Le (k)2

We see immediately from Equations (B-5) and (B-6) (which give
the cross-polarized backscatter) that sin nm=0 so no cross-polarized
field is generated.

The radar cross-section is defined by

S
o= lim 4nrl ’ETI (2-7)
r>o £

Applying Equation (?-5), we obtain
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, 2
o = lim Aqrl -} >3 K ) (2-2a)
r+o (4k“a"M+(k)“-L+(k)
azk :
= Ay 55 5 5 (2-8b)
4k a“M+ (k) -L+(k)
2
o oAk (2-0)
na’ k% a2M () 2L (k)2

The results of Equation (?2-9) are evaluated and plotted in Figure

2-A. It is of interest to pote that the normalized cross-sectinn
peaks at [/x=.55, with g/qa“=10.4 dB, and then decreases verv rapicly.
The lowest order propagating mode (TE11) is enabled at D/A=.53A;

hence this peak occurs just below cutoff for this mode, and as the
mode is able to transport energy, the cross section rapidly decreases.
The first three peaks and corresponding modes are summarized in Table
2-1.

TABLE 2-1
SUMMARY OF ON-AXIS RCS PEAKS AND MODE ACTIVITY
——— i
Location of Height of Cutoff for Mode
peak (D/)) peak (dB) mode (D/3)
—— - R - S - .-
.55 10.4 .586 TEN
1.68 3.5 1.697 TET2
?.69 2.5 2.717 TET3

The rapid variation of cross section in these regions is related
to the strong coupling of the normally incident plane wave to the
TEl m modes, as discussed below.

FBowman (1970)] and [Chuang et al (1975)] use their asymptotic
forms for L+ and M+ to obtain a simple form for the on-axis cross
section.

r in/a
- n el . .
Q(m f-.; 1 + e )‘ Imm-1.5612mka . (7-10)
/ka n=1
This leads to
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in/h ® .
Q”? R 1 e ' imm-l.Se12mka (2-11)
Ta vrka m=1

Fquation (2-11) is plotted in Figure 2-5 and yields good results
for D/A>1.

Taking the inverse Fourier transform of Equation (2-5) with
the spatial dependence suppressed, we obtain the time domain response,
<hown in Figure 2-6. This represents the packscattered field as a
time function resulting from a normally incident plane wave, impulsive
in time. This result was generated via the discrete Fourier trans-
form of the backscattered formula for 0<D/X<3.2. Naturally the time
domain response is dominated by the peak at D/x=.55, which results
in damped oscillations. The time domain response can be related
(perhaps dubiously at low frequencies) to a ray optic model of scat-
tering at the mouth. The optic model was developed by [Bowman (1970)1.
For example, if we take the simplest asymptotic approximation for
the L+ and M+ functions, given by Equations (A-27), (A-29), (A-31),
(A-58) and {A-59), and substitute them into Equation (2-5), suppres-
sing the spatial decay and propagation,

Ei - l_ -4nia2k
EV T k@M (k) 2L+ (K

(2-12)
)2

retaining only terms of 0(1) and O(ka']/z), with a unit incident
field
s -a ein/4 = (_])me12m(ka—ﬂ/4)1
yrka m=1 m
( ; Z2maw
® in/2(m+1/2) c
s _-a c e e
S22 1+ /S (2-14)
2 na mZ] ‘/(; m3/2
Taking the first few terms of the summation explicitly
i % 12200 ; %r_ igaw ;7T i6aw
5,23 N +,/E_ e e ; € e © , € 4
S 7z /o 5 s
L w 2ve Y 3v3 w
(2-15) i
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Figure 2-6. Inverse Fourier transfurm of "exact" on-axis
backscatter with weighting to reduce
Gibbs-type ringing.
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Note that e © results in a time delay of ng . We employ the Fourier

transform pair

1 u(t)
— ey 1Y (2-16a)
Yo V2t

and its Hilbert transform
I eyulct) (2-16b)
v V=27t

Taking the transform of the frequency domain expression

~ s i o
ESJ‘i—a 1 + -Z%E(_(ﬁ_)_ec -}.(".I"| eC +&lle_>
Yo 7?7 Vo 33 /e
(2-17)
leads to
2a 2a
S -a 1 [c u(t- C ) U(E— - t)
(0 » 22 st + 3,5 (- > >
t- 58 L
C c
4a 4a 6a 6a
u{t- ==) u(=— - t) u(t- =) u(=— -t)
_ c 4 _C N C + €
2/3t- 32 2/5/?-1‘. 3/3‘1:—%2 33022 -t
(2-18)

This is plotted in Figure 2-7.

We note in Fiqure 2-6 that the sharp peaks at t=m-%3 become

almost negligible after m=3, and the response shown in the discrete
Fourier transform results seems to be dominated by the ringing as-
sociated with the lowest frequency resonance. Since this resonance
is not well predicted by the asymptotic forms (compare Figures 2-4
and 2-5) it is not surprising that the long-time or steady-state
response is not well predicted. This resonance appears to be related
to the currents excited at the mouth, and to some extent, associated
with an exterior natural resonance of the cylinder, since all the
waveguide modes are evanescent in this region.
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The coupling of an axially incident plane wave to waveguide
modes can be determined from a special case of equations (B-11) thru
(B-14) (which give the general coupling coefficients for incident
plane waves). Taking 0i+0 we see immediately that only n=1 modes

are excited.

. 2 . 2
IR G L T DAL I s U
(2-19a)
4ij  L+(aq ) f 21§, L+(aq.) £2
I Jnm m 1 1 1m m 1
M e al2me (k) N 1-£2
m
(2-19b)
0 =ll1(k+()tim) M+(o¢§m; 1 l
m- T +(ky 2 2
a]m(]°'TT§) -
Jlm
P(kral IMe(aly )
- __.Lm___u]_‘_"l__,____ . _12 (2-19¢)
kao §0(1 = F)M+(k) 1-f9
Im
Ai(k+a) IM+(at 1} f2 k-al
B - . m Im 10, %
Tm kaj a(l -%)2M+(k) 2 1-£4 K-ayp,
Jlm
i(k+a) IM+(a) )
R [ ____]_Lm_-_- ) LZ (7-19d)
kajpall - —)M+(k) 1-f4
Jlm

In both TE and TM cases, rotation of the incident field from 0 to $
corresponds to an equal rotation of the azimuthal dependence of the
wavequide mode; otherwise the coupling coefficients are the same.
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For purposes of comparing the relative importance of these
coupling coefficients, the power flow associated with each of the
modes can be computed. For TE modes, with an incident plane wave
of unit amplitude based on [Collin (1960), p. 1797 the power flow
is computed as

U 2
-3/ koz,',m<3-r%;> II1H,(0u0) | da (2-20a)

. 2
1 [Ho 2 2" a €0 Jn(Jnmp/a) 2 2
= — k cos n¢|B dod
2V e, a"m< ré) o Ho Jn(jam)? ®{Bom|odode

(2-20b)
1 /% , a 2 2
35y i) Pl 2
32 [ 3,(3pne72) “odo (2-20c)
3 () 0
i 7‘/—‘ nm( N) IBnm 2
2 _n-a (22
a” - —5—) J,(3)"| (2-20d)
Il nm (: Jnmi>

(ka) (o) a)al [/ 2 )
p - IJ[- __('Tj?r—"‘ - 2518, (2-20e)

n

We assumed a unit incident field, which has an incident power

. 1 5% .12 1[5 .
density of YA E AT so the normalized power flow becomes
0 0

(normalized to the average power flow and the area of the waveguide
mouth)

_ 1 (ka){opya) —— (i |8 (2-21)
/ >("a ) 2 (Jnm '_—? nm
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Similarly, for TM modes, we obtain

p =] /EQ ka (_E_)2 If |E |2 da (2-22a)
2 My o mig e 2z
1 /%o a |2 ?" ? Jn(jnmp/a)z 2 | |2
= = [— ko (=) cos ngl|A pdpd¢
2 u nm Jnm o 0o Jr"(jnm)z nm
(2-22b)
2 2
1[5 ko‘nm(\]nm) "‘Anm| a >
=3/ — J 9,3, p72) pdo (2-22c)
0 In () 0
€ ¢
) 3 2
Ho km"m(‘jnm) lAnmI 1 1.2 N
- . \2 7 139003 (2-22d)
Il
(ka)(a, —a)
P =,l, — |,z\nm|2 (2-23)
1/% ,_.2 Jrm
W (ma™)

0

The power flow coefficients are plotted in Figure 2-8 for the
first three TE]m and TM]m modes, for axially incident plane waves.

The reason for the behavior of the on-axis cross section becomes
somewhat clearer, since we see that the TE m modes all couple much
more strongly to the axially incident pTan; wave than the TM, modes.

Hence, the reqion in which they are enabled exhibits a much more
dramatic variation due to the size of the change of power absorbed.
[Weinstein (1969), p. 151] discusses this behavior and proves that
asymptotically the optical cross section equals the sum of the ab-
sorption cross sections for the TEy, modes. Figure 2-8 can be com-
pared with Weinstein's Figure 53.
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B. Off-axis Behavior

The radiation patterns of the various waveguide modes have
been produced in the literature; all that is produced here are a
few curves for comparison. Figures 2-9 and 2-10 with ka=4 can be
compared with [Weinstein (1969)1 Figures 46 and 48. Fiqure 2-11
and ?2-12 with ka=12.77 can be compared with [Narasimhan (1979)].

0f more practical importance is the relationship of these
radiation patterns to radar cross-section. As is discussed in Section
I1-C, the radiation pattern of a single waveguide mode in a certain
direction can be seen, by reciprocity, to be directly proportional
to the coupling of an incident plane wave from that direction to
the appropriate waveguide mode. If, for the moment, we assume that
the cylinder is terminated with a perfectly conducting flat wall,
each propagating mode will be reflected back to the waveguide mouth
unattenuated. For a monostatic radar system, this will mean that
at some angle, which happens to couple well to a particular waveguide
mode, that waveguide mode will radiate equally well in that direction.
Therefore, it becomes of considerable importance to know the directions
and relative strengths of the coupling coefficients of the various
waveguide modes. Obviously, for 8=0, we can see from Figure 2-8
that the TEyy mode dominates all others. Ffrom Table 1-1 we see that,
for increasing waveguide diameters, the TMy;. TEpj, TMy), TEp) are
the next modes to propagate. In a manner analogous to Figure 2-8,
the relative importance to radar cross-section for these modes is
shown in Figure 2-13. However, Figure 2-13 differs in that the
direction is varied for each mode so that the incident field is
assumed to come from the optimum direction. This direction is plotted
in Figure 2-14. For example, for D/ =1.5, the TEyy has a maximum
for £, at 30°, the TMg; and TEoy modes also have maxima at 30, but
for Ep. However, the reiative magnitudes are 0.7, -6.8, and 1.0
dB, respectively. Figure 2-13 might be termed the cavity cross-
section, since it is the contribution to the RCS which coupling to
and radiation from a single mode would produce, assuming that only
that mode contributed to backscatter. Naturally, this is not true,
as other modes will contribute to some extent, as well as the direct
backscatter from the rim. We see that for on-axis scattering, the
"cavity cross-section" produced by the TE]] mode is remarkably similar
to that of the disk.

For an incident plane wave, we have from Equations (B-9) and
(B-10) (which give the coupling of incident plane waves to the axial
waveqguide field)

E/E, A%¢ (0.,0.)f(0,0,2)
= 2-24
i 0t ( )
= H/E, Bon' (0:50:)9(p,0,2)
' o]
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Figure 2-13. "Cavity cross-section” for six lowest order
wavequide modes.
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From Equation (B-17), {(which give the radiation patterns for the
waveguide modes) we obtain scattered fields of the form

S
Ea | | Coe(fsots)  CanlBs0) [_ Jikr
S (2-25)
E C (9 C., (8
b @E( s’¢s) ¢H s"s L C nm
Consider first the topline of Equation (B-9).
E J (j po/a) ~ia 7 - ;.
z _ a9 n Jnm nm (2-26) :
- = nm( 205 Jcos ng — (~——T—— e

£ nm a

Y | B § - . RTTU e
This qgives us - Anm(ﬂi,¢i) in fquation (B-15) except for the

divection of propagation. 1f we assume perfect reflection, and
ignore the sign change, (since we are interested only in magnitude)
this leads to

ES a eikr 1
3 COE(GS’¢S)Ahm(ei’¢i) (2-27)

The RCS becomes

2 1
S
o= 1lim anr? |& (2-28a)
>0 E
2\ o 2
= 4“ COE(OS’Q)S) nm(91’¢1) (2'?8b)

Since we chose hoom, we Tikewise set b= and vary O:Oi:os to its

optimum value. Note that for computations involving Aﬁm and Bgm,

there is a sin n$ dependence in the modal fields. To adjust this ‘
to conform with Equations (B-15) and (B-16), it is necessary to rotate 3
the coordinate system. This results in radiation patterns evaluated ’

at ¢S = g. Hence, we obtain, fnr the remaining three cases:

2 |
Bn(05505)

g = n ' (P IZ
b - n/2, b; =1, 6,70, 70 (7-29)
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=m, 6_=06,=0 (2-30)

=, 0.=0.=6 (2-31)

The backscatter directly from the rim is discussed by [Chaung
el al {1975)7. They used a pulse radar and extracted the RCS of the
rim based on the first return pulse. The agreement between theory
and experiment is better in some cases than others, but fails to match
the detailed pattern. The normalized RCS can be derived from Equations
(B-1) through (B-4) as follows.

ikr

s i e
s 2
2 |Eo
o= lim 4nr° |— (2-33a)
> Eg
-4 2
= 47Sq| (2-33b)
o .4 lg I? = lE S |2 (2-34)
na? ;7 0o a ~00
Similarly
2
o 2
—5 = |5 (2-35)
77 [3 %o

Comparison of Figures 2-15 and 2-16 with Figures 2 through
5 of [Chuang et al (1975)7] reveals that despite use of the complex
scattering form, and more accurate computation of the factorization
functions, some substantial discrepancies still exist between
Phoovy and experiment. Possihly the exnlanation is that
any real cylinder must, of necessity, have a finite wall thickness.
[James and Greene (1978)1 showed that this leads to substantially dif-
forent results than obtained with the infinitely thin "knife-edqe”.
0f course, the accuracy of the measured results is a possible source
of discrepancy.
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C. Reciprocity Considerations

It is evident from physical considerations that there must
be some relationship between the coupling of an incident plane wave
to a wavequide mode, and the waveguide radiation pattern of that
mode. This will be shown by the reciprocity theorem.

.

PO

From [Harrington (1969), p. 116-1177, if the current J2 produces

fields (E2,H%), and current Jb produces fields (Eb,Hb), then

- B2 x WD - €D x HY).ds = fI(eR.0P - EPLgyav (2-36)
S v

where the surface and volume are of finite extent. Generally speaking,
reciprocity is applied to sources and matter of finite extent. In
this case, however, the matter is of semi-infinite extent. Usually,

it is shown that the surface integral vanishes far from all matter

and sources. In this case, we will assume that it vanishes external

to the wavegquide, and thus need only evaluate the 'power flow'

(E% x H) inside the waveguide,

First, we apply reciprocity to determine what source will produce
a plane wave incident on the waveguide. We assume that there exists
a current dipole, impulsive in space, of either 6 or ¢ orientation,
located by Ry = (8=6,, ¢=m, r=Ry), where R, >> a, R_>> ), as shown
in Figure 2-17. This dipole produces a far-field at the origin of

Ty ik|r-R | [-cose
E, = 2 lkl%}:f— e ° 0 (2-37a)
o 4'n|r-R0| 0
o kTR | | o
£, =/ k2 0 (2-37b)
y v & 4u|v-R | R
TR ik|r-R_| |-sing
£, =/ 2 X 0 0 (2-37¢)
0 4n|r‘—R0| 0

for 6 or & source unit vectors, respectively. Hence, to produce
a 'plane wave' of unit amplitude in the vicinity of the origin, it
is necessary to set
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Figure 2-17. Sources for incident "plane-wave".
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For source a we choose

€
0

where

Let us first consider TE modes.

€

z l‘l—O ‘]n ']r'1m

14nR0 -1kRO

D>

— 4R - ikR
R A
uO

9>

8(0-6,) 8(¢-m) 6(r-R)

These have fields given by

2 3, (ime/)

H = /-2
ikna
E:
P s 2
Jnm
~-ika
£ = 31Ka
¢ I
EZ = 0

’E
H =+ _o_
p TV Hy

I (pmo/ ) ) efianmz

(2-38a)

(2-38b)

(2-40)

(2-41a)

(2-41b)

(2-41¢)

(2-41d)

(2-41e)
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- .2 WL . L
. ;v/iQ '“mn"_" \n(Jnmp/d) <—-.u|rnp> e-]unmz (1)

¢ o J! 2 SJETJﬁm) cos n¢
nm
+iahmz
where e means the fields propagate toward the waveguide mouth
-iaamz
e means the fields propagate toward - =

Let the b source be located within the guide at z = -L, as shown
in Figure 2-18.

B, o il a e-1a5mL 3 Jﬁ(Jéme/a) <cos n¢>
Uo Jnm Jnijnmj sin no

J (j' p/a) ,-sin né
~ na n'vnm
- P ('I )“ 5(Z+L) (2-42)
Jnm pJn Jnm <cos né >

This current source will generate the appropriate TE mode of unit
amplitude propagating toward the waveguide mouth. It will generate
the same mode, of equal amplitude, propagating toward the infinite
recesses of the waveguide. Note that since the leading sign on H
and H, changes with direction of propagation, the discontinuity in
tangential H exactly matches the surface current. However, E E¢
and HZ are all properly continuous. e

Next, according to Equation (8-10), an incident plane wave
witil(? polarization produces a field inside the guide.

8 . . v e
a € y Bnm sin né Jn(Jnmo/a, ja' 2z

nm
HD = [— ) —-——(Trj“‘ e (2-43)
z uo n m Bﬁm cos n¢ Jn Jnm

According to Equation (B-17), the TEn mode propagating toward the
waveguide mouth produces a far-field %attern

eikr uo
v = Hnm . (2-44)
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Figure 2-18. Sources for reciprocity theorem,
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Plugging the currents and fields into the reciprocity equation,
taking the surface and volume indicated in Figure 2-18, we obtain
the following result. For 8 incidence, Hg has sin n¢ dependence,

so we take the bottom line of Equations (Z2-41) and (2-42).

— 0 2y a . -ja' z
i el p S ey e
\ n M -oO0 (4} nm

Jnm o n Jnm n ‘]nm

2 o iaﬁma e-mr"mL _p an_ J"(jﬁmp/az cos né

Yo Inm Jm pJn{Jnm)
. Ipd)ne/8)

+ ¢ 3G sin nd| §(z+L)pdpdédz (2-45)

n*vnm

We invoke the orthogonality of modes to assert that the sum-
mation reduces to a single term, as this integral vanishes except
when the mode and current have the same radial wavenumbers and azi-
muthal dependence. When this is satisfied,

2m 2m

[ cos’nede = [ sinfned = m (2-46)
0 0
(7f B30y - g0 ika 1%l [0 Tom? lomt
v nm Jnm u0 Jnﬂ"
N 2 tf 3t 2
? (na 2 <Jn(3nmo/a) _<Jn(3nmo/a) oo (2-473)
= \T O] __—(_’_I__)—
0 Jnm Odn(Jn;y—; Inlipm
8, . . y 2
Ej?ﬂﬂfﬁ?ﬂ@é ‘o ¢ n?a’ J"(Jnmﬂff{, MARE /a)2 d
(j' )2.. Vg o\ 2 ) n'Jnm? prap
n Jnm ‘]nm ‘]nm

e i e = &

‘aticie il ;

shianil P FOTNEp Y W)




n ' 3 fe a
= —n‘rL—'rolm'"g\/—Q J ed ( /a)zdo (2-47¢)
J (3 )3 % o
n‘*“am’ “nm
0 4
8 ka' a €
- I (G0 2 (2-47d)
Jnm o

Since Eb is generated by a field with a sin n¢ dependence, this will

rotate the radiated field generated by C
ate C oH with a cos nm dependence,

- — §C ikr €. i4mR_ -ikR
b a 6H e 0 0 0O (w7 VA :
J’{J‘ A L J’{J‘ . . /u—o e a(r-RO)»?dv i
¢H E
(2-48a)
ikR . :
€ o 14mR _ -ikR
0 e 0 0 v
- /% ¢ E_.. 9 (7-180)
Mo NH RO k
_4mi /%o Y
= T U—O COH '7-‘1\PC)

This surface integral within the wavegui

2m - - = —
=J
0
21 a
b
=If[(EH )(Fa
5 0 ¢¢o ¢>rb
We observe that Ha = B Hb.
b4 nm 'z

51

da
FET x WP - ED x W3 .« Spdpdy  as z e - = (2-49a)
[¢]

Hg) odpdd (2-49h)

by n/2. Hence, we evalu-




Then, since each of E , E4, H,, and H, are based on H_, the fact
that they are scalar multiples forces the integral to“vanish identi-
cally. Thus we are left with

, 2,., 2 2

ﬁai'l"la_f,(_\]ﬂrﬂ_-rl_)_ o gt - 4ni o C (2-50a)

. 4 m nm -~k v'po OH

Jom 0

2 2

: (jt “-n%)
. _ ik . 2 nm 0
LOH = - kaanma a — i Bnm (2-50b)

Jnm

which can be seen to be satisfied by some simple algebraic manipu-
lations.

For a $ incident plane wave, we note that H2 has a cos n¢ depen-
dence, so we take the top lines of Equations (2-47) and {2-42) for
both the current and waveguide fields. This results in exactly the

same integrals for both Ea.Jb and Eb-Ja, with 6+¢ so that
22
2 (3p"=n")
ik v 4 om T
C¢H = -7 apy? B (2-51)

4 nm

‘]nm

which is satisfied identically.

For TM modes, we begin with

. +,

- Jn(Jnmp/a) cos né e-1anmz (2-52a)

z Jn{Jnm) sin nd

J'(j_p/a) |cos nd Yia 7
. a n'Ynm nm

E o=+ da S s — e (2-52b)

O Mg Jn(Jnmj sin né

2 J.(j.p/a) [-sinne] %4
Ey = ¢ ia ﬂ‘_’_z %ﬁﬂ."ﬁ;u - e_wl'""Z (2-52¢)
= nm Jom Y nm cos né
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2 [€ Jn(jnmp/a) -sin n¢ Ya 2

ikna 0 nm
My = - oV al T e (2-52d)
P jnmz Ho P Jnmy— cos n¢
1 (§ p/a) 5
o ‘Eﬁ iq Yn ‘]r]mp a CosS n¢ e-]anmz (2-576)
¢ JnmV Ho Jn(Jnmj sin n¢
HZ =0
+io‘nmz
e propagates toward mouth 12-52f)
-ia,_z
e nm propagates toward - «
Let
5 _iqnmL J (j. p/a) |-sin no
P =0 [f0 ikae ™ -3 ha n nmp___
My JnmInlm) Jnm p cos né
R cos no
-0 J (3, p/a) §(z+L) (2-53)
noonm sin n¢

This will generate the appropriate field traveling toward the wave-
guide mouth. However, to generate the discontinuity in tangential
H, the leading sign on all terms must be reversed for the mode
traveling toward the infinite recesses of the tube. However, as
before, this is of little importance since it contributes nothing
to the reciprocity integral.

The incident plane wave generates fields

0 , .
ca j ALy €OS nd Jn<JnmP/a) e—lanmz o
z { Aﬁm sin né Jn(‘]nmj

The modal fields radiate
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TS S S (2-55)

For the § incident fielq we obtain

~ia_ 7
6 nm
—_— 02 a A in__ae /
b nm nm N ,
[ e3%= 1 [ g — — (~0J(J. p/a)cos ne
v -~ 0 0 nm n(‘] \ n nmp

- L
N Inldpmp/ ) ‘“nm
T gé_ — " 5ip n?) / “o 1ka e

nm Mo

~ na Inlipge/al
<¢ 3;— ~———5—-—~— sin np - 5 J¢ ( nmp/a)cos n%) §{z+L)

pdodédz (2-56a)
T L
~ Zw/EE.AG nm? e M ika e 10an"
b C'nm N
0 nm Jn(Jnm) nm
a 2 na? Jn(jnmp/a)z
J (J;l(‘jnmo/a) +—’-2 — odp (2-56b)
0 J 0
nm
2
e A ko a a
A T o0 o) (2-56¢)
O I Jdnl nm)
2
3 ka3
- _ o .0 e )2, 2
IR AT 21537 2 ) (2-564)
m “n‘*Ynm
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SRR Y R L | (2-560)

—S—a' B A " eikr n EO 14TTRO -ﬂ(RO o
[Jf e°-3%v = [[f (9C6E+¢C¢E) ~— -8 /u— e 8(r-R)dv

v Y 0

(2-57a)

T BE "k

4
3 ko, a € .
0 0 nm _ /o 41
W A T W Y T (2-58a)

0 Jnm 0
1'k2anma4 0 k
COE = ———‘2’“ Anm (2-58[)) ;
Yom E

Finally, for $ incidence, the field generated has sin n4é depon-
dence, forcing us to the bottom Tine of the current and field distri-
butions (Equations (2-52) and (2-53)). The integrals all end up the
same, resulting in

ikZOtnma[1 b
C., = A (2-59)
o 4] 2 nm
nm

Therefore, we have demonstrated the relationship between coupling
of incident plane waves to waveguide modes and the radiation patterns
of waveguide modes.
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CHAPTER 111
SCATTERING BY A REPRESENTATIVE ENGINE-LIKE
OBSTACLE IN A WAVEGUIDE

This chapter is concerned with scattering by a simplified model
representing an engine geometry in the intake duct. The model consists
of an infinite circular waveguide housing an axially symmetric cone
centered on a flat plate, both perfectly conducting, as shown in
Figure 3-1. This model is based to some extent on observation of
the Pratt-Whitney J-57 turbofan jet engine, on display at the Air
Force Museum, Wright-Patterson AFB, Ohio. 1In this study, it is
assumed that the TEyy mode is incident; similar procedures could
be followed for any other incident mode. The coordinate system is
centered at the base of the cone, as shown in Figure 3-2.

The calculation of fields scattered by the cone in situ would
be known completely if one knew the exact currents on the obstacle.
The scattered fields can be obtained straightforwardly from the dyadic
electric Green's function and the dyadic magnetic Green's function,
based on the integrals given by [Tai (1973), p. 91.

E(R)

) [If r‘;el(ﬁ,“ﬁ-)-ﬁ(ﬁ') dv' (3-1)

H

HR) = [I] & ,(RRY)-IR") dv' . (3-2)

Although the source singular term for the dyadic electric Green's
function is still being discussed in the literature by[Yaghjian (193031
and others, the Green's functions at points not near the source can
be obtained unambiguously from residue series expansions. These
expansions consist of a double summation over n{azimuthal index)

and m(radial index) of terms representing TE and TM fields, both
propagating and evanescent. Hence the coupling to a given mode can
he determined by a single integral, allowing one to obtain either

£, or H,, based on known currents. Mathematically this can be ex-
pressed as follows: Omitting the source singular term, one can write
{using Tai's notation)




Figure 3-1. Basic geometry for engine scattering mndel.

? b
A

—+>

Figure 3-?. Coordinates system and dimensions for
scattering from an axial conducting cone.




where

g o= jné/a

W2 2 _
ku = ykT-py" = O

? 2,. ,2

= 4 - v
I, = %a (1-n"/3,0 )Y
v o=k
n
En = ] n=0

2 n=1,2,3...

magnetic fields; N contains

N(h) represents TM electric fields or TE

an axial component

magnetic fields so that

M(h) represents TC electric fields or T™
M is purely transverse.




For example, for a single 1l mode, we can obtain

HZ,H‘m =z Jff GmZ(R,R‘),J(Rn) dv"
iEn o ~
AT fle (3 ).3(R') dv' (3-
i z Ngnu(_Pu) JIf gnu( k) J(R') dv' (3-5)
H o

and similarly calculate E_ using ée]' The elements of ée] and émz
are written out in Appendix C.

Because of the difficulty of and restrictions on previous
snlutions for current, a new technique of solving for currents was
explored. A few cases have been previously solved with great effort.
For example, [Tesche (1972)1 solved the problem of a skewed wire between
paraltel plates by using images. [Wang (1978)] used the dyadic elec-
tric Green's function to solve for the currents in an arbitrarily
shaped dielectric body inside a rectangular wavequide. [Harrington
(1961), pp. 407-4063 gives a variational technique to find stationary
formulas for scattering using approximate current distributions.

He applies this to a post in a parallel-plate gquide. Unfortunately,
this method requires computing the self-reaction of the assumed
current distribution, which in most cases is equally as difficult

as solving the problem exactly, since it requires computing the
clectric field generated by the assumed current in the source region,
Hence, no computational advantage is obtained over solving directly
for the actual current by the method of moments, or some similar
technique,

In principle, the problem can be solved by the method of moments
by assuming the current distribution to be a collection of a series
of pulses with unknown weighting coefficients, calculating the elec-
tric fields generated by these pulses, and adusting the coefficients
such that the tangential electric field vanishes as the surface of
the obstacle. The problem with this approach, as pointed out by
[Wang (1978) 1], is that for coplanar field and source, the dyadic
eleciwric Green's function converges extremely slowly, if at all,
in addition to the problems involved with the source singular term,
Convergence of the residue series is enforced by the axial propagation

o J2-2"] ~0pm 122"

factor e , which becomes e , for large enough m.
For coplanar source and field, this factor becomes unity. In Wang's
case the problem was solved by summing the resultant series ‘without
the convergence factor) in closed form. In the case of the circular
wavequide, we have a Fourier-Bessel series whose summation in closed
form is not readily apparent. For example, the z component of G_]
is given by ¢
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ol 222 2

oo [2.0]

& L nm . C .
Gelz,z\ z;nzo mglen - kZJ'(’ )2 4Jn(Jnmp/a)Jn(Jan /a)cos ny cos nh'.
am® ¥n'dnm

(3-6)

Taking asymptotic forms for j 0 and Jn( ), assuming n=1, for coplanar
source and field point, we obgain

I @ (mtla)m (3-7
J](x) > /%; cos(x-3n/4) (3-7

ée]z,z J-EQEQ?E%EQL Z L-"—'i!i‘lcos((m+‘<z)m)/a-31r/4) cos((mtz)mp'/a-3n/4).
L k~a m=1 Jop'

(3-8)

It seems that even if p and p' are different, this series does not
converge. The series does converge for real objects after inte-
grating over volume currents of finite extent, since integration
over p' results in dividing the asymptotic terms by (m+%)n, and
integration over z multiplies the element by the differential dz,
forcing the coplanar elements to make an infinitesimal contribution,
The reminder of the integral is well behaved, due to the convergen::
fa tar for noncoplanar points,

This extremely cumbersome process seemingly cannot be ayoided.
However, poor convergence in the source region suggests a similar
problem in free-space scattering, and the superior convergence gf
the magnetic field integral equation (MFIE) over the electric field
inteqral equation (EFIE) for most obstacle scattering problemsLtot
We therefore proceed, analagous to the MFIE to force Us =n xH

. ~  ztotal
[ just outside the surface of the conducting body and n x H otal-g

just inside the surface. As with the MFIE, taking the mean at the
surface results in dividing the current by two. Assume the current
consists of a collection of pulses of arbitrary weighting

al

Jg = E ap(r - Fk)ﬁk (3-9)

where u is a unit vector tangent at the surface at ?k’ and p(?-rk)
i+ loralized near e Then
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= g a, [f émz(ﬁ,ﬁ‘)-ﬁkp(R'-rk) ds' . (3-10)

Enforcing the boundary condition

W = hox Aot L F A x ES

n xﬁlﬁﬂs— nx A7

-~ i _ ~ ~ 7 o D1 ~ " '
nx H(R) = g a feu, -n x ff GmZ(R’R )-up(R'-r, ) ds

(3-11)

We can then enforce this condition as many times as necessary to
obtain the required number of equations to solve for the a,'s. The

advantage of this approach is found only by careful examinatian of
the convergence properties of Ge] and sz. The least convergent

term in éel goes asymptotically as m sin mx, but the least convergent
term in émz goes as 1 sin mx. After integrating over the surface,

. Sin mx cos m :
we obtaln-——]ﬁ—— or ——§ﬁ~5, which are convergent, Hence, we can

work with surface, rather than volume currents, and construct a
relatively simple code. Additionally, “here appears to be no dispute
concerning the behavior of Gm? in the source reqgion,

With the geometry shown in Figure 3-?, we define

n=Lp+bz
L2 + b?
o b 2
Eenxd-— - L o b =D2ELZ (g
’ ).
L“ + b 0 1 0 /L + b

Assume the current consists of the sum of pulses
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N

JS =
k

H~1==

1 a],(/13 p(D'Ok) + bk &3 p(p‘pk) (3-]3)

k=1

where p{p) is a triangular pulse function. This current distribution
i< shown in Figure 3-3. Then using Equation (3-11), we obtain

nx H' = ) a thp(p-p, ) - n x ff ﬁ R')-t p(ﬁ'-ﬁk) ds']

+ Z bkﬂhup(o-ok) -nx [f Gy (RR') -0 P(R'-T, ) ds'J.

(3-14)
Next, to employ Galerkin's method, we generate 2N equations by multi-

plying through by each basis function and integrating over the surface
S, to obtain

Genx [ AYR)p(R-F ) ds -

N .
[ Sp(R- r ) p(R-r )d%( ; t)—ﬁi-ﬁxffffp(R-fq)GmZ(R,R')-
-Ep(ﬁ'—?k)dsds'
N - _
+kZ]hk[gjjp(R-Fk)p(ﬁ—Fq)ds( AT (R B (RLRY)-
-&p(ﬁ"-?k)dsds] (3-15)
o= 1,2,...N
i=1,2

where uy = ¢ u, = t.

Thus ?N linear equations for the 2N unknown coefficients a_ and b
can be obtained, which can be straightforwardly solved by &1n9ar
algebra.

In order to further speed computation, elimination of unknown
currents in the backplane can be obtained by using the method of
images. Instead of the original problem, we introduce an image such
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Figure 3-3. Current pulses for moment method solution
of scattering by cone.
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thal the image of the cone has image currents on it, and the image
incident field is assumed to be present, as shown in Figure 3-4.

This automatically forces ﬁxftOta]=O and n-ﬁtOta]=O in the backplane,

hence reducing the amount of coplanar integration necessary. With
this technique, we obtain a solution for the currents on the cone,
then integrate these with Gy to obtain the H-field in the backplane,
hence the currents in the backplane. The current distribution thus
obtained is shown in Figure 3-5. It would be extremely difficult

to measure this experimentally, and constraints of time and money
prohibit this verification.

The fields in the region of the cone-base termination can be
approximated in the spirit of the WKB approximation, if the cone
is slender enough, and the cone diameter varies slowly enough with
axial position. At each axial position on the cone, it is assumed
that appropriate TG fields exist for an infinite coaxial line of
the same inner diameter. Since E,=0, this guarantees nxE=0on
the cone and outer waveguide walls. The radial wavenumber is then
computed by solving the characteristic equation

Jé(ub) Yh(ua) - Yh(ub) Ja(ua) =0 (3-16)

for the smallest positive u, with b the inner diameter and a the
outer diameter. The values of p are plotted in Figure 3-6. Next,
the scalar wave equation for H, is approximated by assuming that
u(z) varies slowly enough so tﬁat we can neglect the coupling of
u(z) through the radial function. Suppressing the azimuthal depen-
dence, let HZ = R{p,z) Z{(z). The scalar wave equation

2
aH 2 a™H
13 (_ %> ISR SN kZHZ -0 (3-17)

0 3p ap p2 z aZ?

is approximated by setting

g—zR(D,Z) =0 (3-18) .""

so that the wave equation reduces to

e 2 2
TR LR (P TR 2(2)+ (R () 2(2) 4R (0) THEL <,

e} H
4,’)(\‘ P 3p pz 92
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Fiqure 3-6. Eigenvalue of TE,, mode for coaxial wavequide as a
function of inn%n1 conductor radius.
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Since itowas assumed that R{p) was an appropriate combination of
joswel functions, this reduces to

2
"-%— (kD7 =0 . (3-20)
az"

Since u(z) is a known function, based on the local radius, this
equation can be integrated numerically to obtain Z(z). The results
of this numerical integration are given in Figure 3-7. Finally,

to normalize the radial function properly, flR(p,z)}Z da must bhe

constant locally at all cross-sectional planes. Subsequently, H.,
Hy., and H_ can be determined at the inner conductor, and hence tge
sirface clrrents Jta and J,, which are shown in Figure 3-8.

n ¢
There are several limitations to this approach. Since H) =0
on the inner conductor but H_ # 0, n - H # 0. Maxwell's equations

are only satisfied approxima%e]y, not exactly, since the coupling

of y(z) through the radial functions was neglected. The behavior

of the fields near the tip of the cone was approximated very loosely
since it was assumed that the field consisted only of incident and
scattered TE]] modes immediately beyond the tip.
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Figqure 3-7. Solution for axial variation of fields for TE ! made
in circular wavequide with cone. L/a=?.0, b/a=0.5, ka=%.0.

= ja
@ - (xa)? - (n2)?
Q@ = 1(2)
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Figure 3-8. Currents induced on cone in circular wavequide with
incident TE,; mode, L/a=2.0, b/a=0.5, ka=2.0, solution by
coaxlzﬂ approximation with slowly varying
center conductor.




CHAPTER TV
CONCLUSTONS AND DISCUSSION

fhe problom of oredicting the rag e ceonss section of jet intake
cavities in g spectral region where the cavity aperture is of rosonant
dimension has been approached via the exact Wiener-Hopf solutinn
for a semi-infinite wavequide. [xact (numerical integration) RCS
computations have been presented for the semi-infinite circular wave-
quide for electrical diameters from zero Lo three wavelengths. Thes:
comput.ations smoothly join hiqgh frequency asymptotic results and
also serve to define the reginn of validity for the simpler aswvnn-
totic models. Therefore one of the matrices in a generalized scat-
tering matrix development of the scattering by a finite loader circular
waveguide has been completed. In the process, the nontrivial relation-
ships between two earlier studies of the semi-infinite cylinder have
been developed and certain errors in a publication from one of thise
stindies have been corrected.

The coupling coefficients relating an incident plane wave to
internal wavequide modes have bheen extracted from earlier studies,
recast o in a more convenient form, and evaluated in the resonance
reqgion.  The predominance of the T modes over the TM modes in powes
dhsorption for axial incidence has been demonstrated.  The relative
importance of the five Jowest ovder modes for non-axial incidence
has been demonstrated qraphically.  The relationship belween the
coupling caefficients and the radiation patterns of the waveguide
mades has been established via the Lovent, reciprocity theorem,

The relationship thus demonstrated is that the radiation patteyn
and the coupling coefficient for a given mode at a given frequency
and pnlarization are proportional. This is of particular importance
to RCS calculation since a given waveguide mode will couple to and
radiate efficiently in the same direction and with the same polari-
satian,

Modelling of the leading surfare of a jet engine as a rore
o a flat plate inside a circular wavequide, we have computed the
currents on this obstacle, by using the method of moments and 1h
dvadic magnetic Green's function appropriate to the interior of
civcular wavequide,  The retlection coectticient tor an incident
mode has heen calculated basod on these curvents at electod five!
frequencies.

[t therefore remains to apply these results to Equation
(1-8) to solve the vadar scattering problem in a self-(onsistent
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focbicon,  This oo dome tor come thlusteatiye caves. First, fixing
aoper oot by candacUing Flal plate of Ten vadid down the waveqguide
from the mouth oo Shosn in Diguee 4-10 the RCS has been computed
while varying the diameler from zero to 1.5 wavelengths.  The normal-
ized RES Qe shown in Fiqure 4-?2,  In Figure 4-3, the normalized RCS
iv <hown for the case when the waveguide diameter is one wavelength
and the flat plale varies from two to ten radii down the waveguide.

Discussion

The calculation of scatierina from the inlet mouth and coupling
to internal modes has been performed modelling the inlet as a circular
et with infinitely thin walls and a knife-edge rim. In practice
inlet vims have a finite wedge angle, and are very rarely circular.
The major inadequacy onconntered in calculating rim scattering for
the knife edge by ray optics proved to be the underestimate of the
peak just above cutoff of the lowest order propagating mode (comparing
Figures 2-4 and 2-5). Unfortunately, for arbitrary geometries, theve
seoms Lo he no simple way to patch up ray-optics to solve this problem.
Since the frequency range Lhis ocours in is dow, it inay be possihle
Lo ovaluate this vegion by moment melthod techniques.  Although this
was, not dene in Lhis study, we con see that the ray optics approxi-
mat ion dons work well provided we are sufficienltly above cutoff of
the Towest nrder mode.  For circular geometries, this condition is
that. the diameter is greater than one wavelength.

Because of the reciprocity relations demonstrated in Section
IT-C, it is clear that discussion of radiation patterns and coupling
coefficients are redundant. The calculation of radiation patterns
has been discussed by [Weinstein (1969), pp. 139-1507. Weinstein's
comments on the use of Huygen's principle for calculation of radiation
patterns indicates that in the transition region (near cutoff)
Huvgen's principle performs poorlv, and worse for TM modes than TC
modes,  As Figures 2-13 and 2-14 indicate, the relative importance
of TM modes to backscattering from cavities is very far below that
of TE modes, and Timited to angle far from the forward direction.

For all practical purposes, forward scattering in the transition
rogion can be calculated using the TEyy mode, adding the TEoy and
Tl modes as requirements may dictate.  The reason for this can

be qrasped physically by considering Figure 1-3. For modes highe-
than m:1 and for all TM modes, the oscillation in sion across the
wavequide cross-section forces the average interaction to a very
small value, regardless of incidence angle. For m=1 modes, the vari-
ation due to cos nd dependence can he seen to lead to an optimum
anagle, from which the aperture fielas apoear Lo be nearly of the

Same s ign,

for non-civeular geometrios, the primary conclusion we might
draw 15 that the appropriate Tow-ora 7o omodes will dominate scat-
tering in the forward divection, S “eney=Hopf solutions are




Eifo

Figure 4-1. Geometry for self-consistent scattering problem
using flat plate.
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L

not available for these arbitrary geometries, it will probably be nec-
essary to construct moment method solutions for near cutoff frequen-
cies. Higher frequencies can probably be adequately approximated by
ray-optic solutions as done by [Pathak and Huang (1980)], for example.

The impulse response waveform given by Figure 2-6 indicates
that rim backscatter is really only significant for times of t<5a/c.
Furthermore, this short time response can be reasonably approximated
ray-optically, confirming our earlier statement that high-frequency
scattering can be adequately modelled ray-optically. The low-
frequency scattering, which is not ray-optic, corresponds to the
long-time response, which is typically of little interest.

Having enumerated the difficulties in calculating scattering
coefficients for object inside waveguides, it becomes clear ihat
much work remains to be done. The use of the magnetic field dyadic
Green's function and appropriate boundary conditions provide some
improvement over use of the dyadic electric Green's function, but
it is still very expensive computationally. The possibility of
azimuthal asymmetry (for example, a blade structure) has not yet
been addressed. One might model the blade structure axisymmetrically
by using boundary conditions in the backplane Ej = 0 and Jg = Hy = 0
and at the outer wall J,( =~ H (D a) = 0. This allows radial
currents and azimuthal E f1e1ds to ex1st but not radial E-fields
or azimuthal currents. It further forces the axial current to vanish
at the tip of the blades. For a structure with 28 blades, for example,
it would require an extremely large diameter waveguide before signifi-
cant azirnwthal currents could flow on the blades. One problem in
implementing this study would be that the image procedure used in
Chapter III to eliminate coplanar integrations could not be used,
and it would be necessary to integrate coplanar source and field
points. Another approach would be the use of the free-space Green's
function, to analyze the structure. In this case it would be
necessary to also set up currents and enforce boundary conditions
at the waveguide walls, thus vastly increasing the number of current
elements required. Another possible approach is to segment the
obstacle structure and use waveguide modes appropriate to coaxial
wavequides near the obstacle. However, the convergence properties
of this approach are unknown.
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APPENDIX A
EVALUATION OF WIENER-HOPF FACTORIZATION FUNCTIONS

The factorization functions L (a), and M,{a), are defined as
being functions which are analytic in the upper half of the complex
n-plane, which also satisfy the equations

L@, (o) = i, (va)l ! (va) (A-1)

M, (M, (=) = w10 (ya)id T (ya) (A7)

/
whore y = Jk? - q? (Einarsson et al, Equations (5-33), (5-31)),
The exact function can be evaluated by numerical integration [Mittra
and Lee, (1971), p. 107, Egs. (9.8)]. The approximate evaluation
of these functions proceeds in two different regions, for which the
Bessel functions are approximated differently. Section A-1 deals
with exact numerical integration. Section A-2 deals with low-freque
approximations. Section A-3 deals with high-frequency approximation

A-1. Exact Numerical Integration

The exact expression for L (a), is given by

wtic anlnid (aVk”-2" )LD (alk®-2%) oz

L+(a) = expy e f - -
f

N z-
—wtic @

\

(A-3)
where -Im(k) < ¢ < Im{a) < Im(k).

Before proceeding further, however, we note that it would be very
beneficial to not have to integrate out to =, We note that, for
Re(7)>Re(k), the arqguments of the Bessel functions become essentiall
imaginary. From Abramowitz, Equations (9.6.3) and (9.6.4)

-inm

Hf,])(ia Pl e 7 Kn(a[?-kg) (A-1)
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where Kn( } and In( ) are modified Bessel Functions.

Taking asymptotic forms (Abramowitz Equations (9.7.1) and {

_Anm ~ dnm
. 2 2 2 .2 2 2.2
mi e Kn(aVz -k7) e In(a 2°-k)
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We are integrating ]n(aVzg-kB) from k to =, but would prefer
grate In(1) from k to «, since it is trivial. Hence, we for
equation

-ia kP-alL (@)L, (<) = myad, (vt (ya)

/Al (@) YITATka)L, (o) = myad, (va)i( ) (va)

We can evaluate this by the same integral, except that the a
of the logarithm becomes very close to 1 for Re(z)>Re(k). T

c*0
) 0 Kn[navkz-zgdn(a k2-22H£T)(aVk2~22)
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These integrals have the advantage that we can essentially int
on the range where -{ka+C) < z < (ka+C) and the total error th
introduced can he made negligible by proper choice of C.

The complex value of k requires some thought. The argume
introducing this imagirary part is given by [Einarsson (1966),
p. 1471, The correct answer is defined as the one obtained in
Timit where Im(k) » 0. For the purpose of numerical integratic
two routes present themselves. We can either allow k and a to
small but finite imaginary parts, or we can attempt to inteqra
in a symmetric fashion abont the singultariticos at z-x and 7:k,
they lie on the path of integration, and add in the appropriate
vesiduyes.  In fact, the first alternative was chosen. 1t was
that the factorizalion functions must be smooth, hence slowly
as functinns of complex k and o. Also, experimentat ~n with v.
of loss tangent indicated the results were relatively ‘risensit
to the loss tangent. Hence, for purposes of numerical integrat
complex values of k and ~ (being ko and ao) are defined by

ko= (1 + .005)k (r

‘! n+ 71,0005 k (
8]

The results of numerical integration for values of n (the orde
Lhe Beasel functions listed as noin Table A-1) ranging from 0
Toave prosented in labic A-10 T was found, by way of confirm
that there was excellent agrooment with both DO and asymptotic
The M tunction s defined by

‘I\M*(w) = alk + YM {0 . {

+

It remains finite a~ « » 0.
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Table A-1

VALUES OF FACTORIZATION FUNCTIONS L+ AND M+ COMPUTED BY
NUMERICAL INTEGRATION
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A-2. Low-Frequency Approximations

Derivation of 'DC' forms for the factorization functions is
not difficult. They can be obtained directly from the small argument
approximations for Bessel and Hankel functions. For n # 0, we get
(Abramowitz, Equations (9.1.7) and (9.1.9))

Ly (o), (-a) = 7id (va)H{! (va) (A-13a)
coN
gui 2o . 2=t (A-13b)
n(F)
51 (A-13c)
1
L (o) w1 A-14
Jla J‘/,; ( )
M, ()M, (-0) = mid:(ya)H 1) (va) (A-15a)
] n-1
£ 51 ?(%E) i_n! n
KA CoL ) LI ) IO

:F______.
a2(k2_a2)

iv/n
(e # Slkrgy

For n = 0, we note that

Jé(z) = - J](z)

Hg])'(z) = - Hg])(z)
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Hence,

M, (n=0,k,a) = L+(n=1,k,a) (A-18)

From Abramowitz Equations (9.1.7) and (9.1.8), for n =0

L+(a)L+(-a) = niJO(Ya)Hgl)(Ya) (A-19a)
£ mi.1. g% gn(ya) F - 24n va (A-19b)
S -1n(a2(k2-a2)) (A-19¢)

The factor .ation of this DC form is non-trivial. Based onEweinstein
a

(1969), p. 335-36] we may approximate L (o) ¥ V2 fn_avek(k+
a << k << 1, /n(2ka)

Having thus obtained the first low-frequency approximation
with ease, it is extraordinarily difficult to obtain a better approxi-
mation analytically. Lee, Jamnejad, and Mittra present a simple
derivation. Unfortunately it does not agree with the results of
numerical integration. This can be seen by comparison of their
formulas with the plot in Figure A-1, which shows the trajectories
of L+(k) and M+(k) for n=1 computed by numerical integration. The
inclusion of additional terms from the small argument approximation
does not improve matters. The approach taken, therefore, is that
for small values of ka, the values of L, and M, are computed by
numerical integration, and interpolation is used.

—l for

It turns out that, for L (n=1,0=k), the values over a surprisingly
large range (0 < ka < 2) can be approximated by

(1-1.0584 Ka)
Ly F 17+7.68 ka) (A-20)

However, this does not admit any generalization, nor does it possess
any thegretical justification.

A-3. High Frequency Asymptotic Approximations

Using the large argument approximations for Bessel and Hankel
Zunctio?i, we obtain (from Abramowitz Equations (9.2.17) through
9.2.20
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Figure A-1. Factorization functions L+, M+, $M+ for n=1, o =k.
Arrows indicate increasing k.




L (o)L, (-@) = niJn(Ya)Hg‘)(Ya) (A-21a)
_ i0 (va)
=ﬂ1Mn(Ya)cosen(Ya)Mn(Ya)e (A-21b)
. 120 (va)
N TZTJ(Mn(Ya))Z(He] n e ) (A-21c)
M+(G)M+(—a) = ﬂiJh(Ya)Hﬁ])'(Ya) (A-22a)
i¢n(Ya)
= niNn(Ya)cos¢n(Ya)Nn(Ya)e (A-22b)
. i2¢ (
’ y(Nn(Ya))z(He] n Ya)) . (A-22¢)

Where, from Abramowitz, Equations (9.2.28) through (9.2.31)

2
My(2)? & [1 + ﬂ‘;’z} (A-23)
2
6,(z) vz - (§+pn+ 01 (A-2)
2
2 .2 4n°-3
Np(2) & [1 - ”822] (A-25)
n 1 4n2+3
¢n(Z) Sz - ('2- - Z’)" + _8_2— . (A-26)

For L, (a) we observe that we can separately factor the two expres-
sions, making L+(a) the product of two factors, both of which are
analytic in the upper half-plane.

Ly(a) = Ll (o) (A-27)

B
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Similarly

THOLR

Hence, by inspection

E

a k2-a2 ]
2
k2a2 4n é] _ a2a2 |
5> (A-28
a k2-a2 a“(k“-a")

k.
1n/4 k a + n ‘] 4

(A-29)
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..(!) =




2.2 4n°-3

et al, (1975

i28 (va)
1+e

L o) M (-a)
12¢n(Ya)

MMy l(-a) = 1+ e

' I eiﬂ/d k"a"~ - g *+ aa
>
' M, (@) /a(k+a) a(k+a)

In evaluating Lil(a) and Mil(a), we follow the derivation of Mittra

The exact expression for LiI(a) is given by

[] . ei26n(ya)]

I1 _ 1§ an
R =

Let

(1 + eizen(Yam

P dz

3 I=J'2an

Then the identity

® m+1 m
]n(]+x)=2 i-_]_L_x_-

m=] m ’
can be used to obtain
- 1 1’2men(ya)
I = z (‘]) e
m=1] m - Z-a

provided Im(g_) > O.

n
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(A-31)

(A-32a)
(A-32b)

1
(A-33)
(A-34) ;
(A-35) :

{
(A-36)




Zille eah Chaatind 4 il s e

% Let
{
12m0n(ya)
_ e dz

In=Jt = (A-37)

where §
n 1 4n2-1
0,(ya) v ya - (5 + gIn + =g (A-38)

ya = avk®-22 (A-39) ]

3 Let
z = k sint (A-40a) 3
k cost dt (A-40b) *

aVkZ-kzsinZT = ka cost (A-40c) ;

The contours of integration in the z and 1 plane are shown in Figures
A-2 and A-3, respectively. The contour in the t plane is selected
so that ya has the right sign, and the integrand vanishes at both
ends of the contour. The contour in the 1t plane is then deformed i

dz

va

to the steepest descent contour. Since no poles are passed over
in this deformation (for Re(a)>0) the integral is unchanged. Hence

12m0n(kacosr)

_re
I, = g sThica kcosT dT

i2mé (kacosTt)
S R L dt ‘ (A-41)
C

. a
spp SINT - ¢
1

With 8 (k 1) =k - (3wt iﬂgll—~ (A-42)
ith 8 (kacost) = kacost - (5 + g Bkacost -

4n2-]

Let X, = —— (A-43)
" 8(ka)




v 1

Figure A-2. Contour of integration in the complex z-plane.
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ReT

Figure A-3. Contour of integration in the complex t-plane.




I, is an integral in the form

[ F(q) e (1) 4o
C

SDP
where F{T) = cost . (A-44a)
sint - &
k
x = ka (A-44b)
iZmen(kacon)
f(1) = Xa
. n, l,n xL
= i2m(cost - (? + I) ka + EBE?) (A-44c)

This can be readily evaluated by asymptotic techniques. We make
a first approximation by ignoring the pole near the saddle point.

) XLsinr
f'(t.)=0 = i2m (-sint + ~——?——) (A-45)
s cost
T = 0 (A-46)
. 2-cos?
Then f*(1,) = i2m(-cost + LS X, )
cCoS 1
= -i2m(]-XL) (A-47)

The asymptotic value of the integral is then

kf (1) -7}1 o
In Ve e GAlCN]

F(t.) (A-48)
N S

where; is the angle of the CSDP through the saddle point.

-




i2m0n(ka)

flrg) = —137—- (A-49a)

Flrg) = - & (A-49b)

f“(TS) = -i?m(l-XL) (A-49c)
Thence

L. eiZmen(kd)e‘inM r——zmka "‘XL (- g) (A-50)

i?mOn(ka) -in/4

® m
1= 3 Li)__f;______ﬁ.g____ (l:_!, /mﬁﬁﬂﬁ'

iZmen(ka)

k “i"/a © L])m e
raf Vadxy L 372 (A-51)

The indicated sum is shown by [Chuang, Liang, and Lee (1975), p. 773]

to be a modified Lerch function. They present a development of its
properties and a transformation to simplify its evaluation.

i2men(ka)

'f (0" egr OZD _Teiannp L(p,3/2) (A-52)
= = p’ -
m=1 m 2 m=} m

where +imm + 12m6n(ka) = i2m™mp

e"(kiz .

(A-53)

N —

or p = -

This function has two useful and simple properties. Since the
parameter p appears only in the exponent, and
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OmeH?m:_d?mp

L(p+1,3/2) = L(p,3/2) . (A-54)

iZmﬂLp)=842mp

Furthermore e
L(1-p,3/2) = L*(p,3/2), where * denotes the complex conjugate.
(A-55)

By using these relations, it is possible to transform any value of

p to the range 0 < p < 0.5. In this range, the series solution is
extremely accurate

i(l-v)n/2 =
L(p,v)=x(1-(v;e‘§T_:’" ' 3 P emem)” (e
™ m=

For vw3/2, this gives

L(p,3/2) = -2n /6-(1-1) + [ (R, + i1 p)p’" (A-57)
n=0

where values of R, and I  are given by Table I of Chuang, Liang,
and Lee (Note sign error in Equation (35) of Chuang et al (1975)
corrected here).
We can similarly find an asymptotic form for M+(a). The analysis
2
. 4n™+3

8(ka)2.
+ 1/2. Otherwise the expression is

is identical with 8, (ka) replaced by ¢n(ka) and XL + XM
(ka)

This results in p = :"

unchanged.
L) I
v oexp —?%T . (A-58)
11
M, (a)
Where

. 8, (ka)
I -Xe ’"’Wm%p L(p,3/2) P = —Tg— + 1/2 (A-59a)




. [T — ¢ (ka)
k -in/4 n _n
IM " o \/;({(]-‘X“M) I(p,3/?) p = '—‘"" c - t ]/? (A-SQb)

A comparison of these results with those obtained by numerical inte-
gration is instructive. For a=k, the agreement is very good down
to the first zero of Jn(ka) or Ja(ka) (for L, and M_ respectively)

if the proper form of On(ka) or ¢n(ka) is chosen. This is illustrated

in Figure A-4 for M+(n=1, a=k); the exact value of M, is compared
to that obtained by using the two term and three term approximations
to ¢,{ka). It can be seen that a rather sharp minimum occurs for
the éxact form of M, for that value of ka for which J '(ka)=0. For
the two-term and three-term forms of ¢,(ka), the mini*um occurs at
the value for which coséj(ka)=0. Thus, the more accurate 6, or ¢,
] should, in general, lead to a more accurate approximation for L,
or M.
+

L, and M_ are also functions of a/K; we must explore the ac-
curacy of this approximation when this ratio varies. This is impor-
tant since o/k = cos® for scattering, radiation, and coupling problems,

J
and o/k =1 - (—Eg) for coupling and radiation of waveguide modes.
In Figure A-5, the value of L+(n=1) is plotted in the complex plane,
where the main curve traces out the real and imaginary parts of L,
with o=k and D/)\ as a parameter. The dashed curves then indicate
the trajectories which occur when varying a/k while holding ka (or
D/2) fixed. 1t is immediately evident that the preceding approxi-
mation does not, in general, capture the nature of this behavior.
The reason for this can be sgen from Figure A-3. As a/k varies,
the pole located at 1, = sifn (a/k) moves closer to the saddle point
at t,=0. We totally ?gnored this pole originally. Without belaboring
the point, it will only ke stated that rederiving the approximation
incorporating the effect of the pole produced only a marginal im-
provement. It was therefore necessary to include two terms in the
asymptotic expansion. This derivation follows.

With the same definitions of k,f(1) and F(T), we have the
asymptotic approximation
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APR———— P

0.8k \ EXACT
0.7} \ - —— 2 TERM
0.6} —-— 3 TERM

—0.4

+

A M+ (RAD)

o) | | | ] |

0 0.5 1.0 1.5 2.0 2.5
D/

Figure A-4., Factorization function M+ for n=1, a=k,
calculated by numerical integration and asymptotic
approximation based on two and three term
expressions for phase of
Bessel function.
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~ —

kf(t_ ) id > '
e e C| ey | (R
(iV) n LN 2
3f f -5f
+ 0 (1 - K(ka)) [% F(t,) (r )" () : (tg)
3fn(TS)
pprgey ) ) (A-60)
S fu(TS) TS

where W(X) is the transition function defined and discussed by
[Kouyoumjian and Pathak (1974), p. 1453]. A is a distance parameter,
relating to the separation of ¢ and Tp’ def ined by

A= i(f(rs) - f(rp)) (A-61)
The saddle point is unchanged, so rs=0. The pole is located at
- ein-l @ -
Tp * sin © ¢ (A-62)
We thus derive Table A-2.

105




TABLE A-2
SUMMARY OF ASYMPTOTIC FUNCTIONS AT SADDLE POINT IN T-PLANE

Function form Value at Ts=0
: n, I\« XL . n, Iym
f(r) izm{cost-(3 + ghz * EBE?) 12m(1-(? ot )
£ (1) i2m(-sinT+K 5_”%) 0
cos“T
?-COSZT
f(1) izm(-cosT+X =) iam(-1+X, )
cos T
f*r () izm(sint+X Elﬂ%—(G-coszT)) 0
cos 't
. 4 2
f(lv)(T) i2m{cosTHX, cos 1-20cgs T+24) i2m(1+5%,)
cos™ T
COST
F() Sht-a/k -k/a
. 2
k sint-1 k
F'(t) SL—-—————? -(2)
(sint-a/k) o
-a/k sinrcosr-(a/5)2c051+2cosr k Ky 3
F (1) 5 - 2Q)

(sinr-a/k)3
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A= i(f(1g) - f(tp))
e n, Iin XL n ., Iw xL
= 1.12m(cosrs-(-2- + Z‘)Fé‘ + cost. -(COSTp-(? + Z)H + m"))
S P
(A-63)
cost. = |
cost. = \/l-(or/k)2
A= -2m 1+xL-<\/ (a/k)? >
\/ (a/k)
= - 2n(1-V1- (k) 2ex, <- —’——-) (A-64)
V1= (ark)?
iom9 (k .
Ip v e] "otk e 14 m 62"~ L —%
3izm{1+5X, |- i2m - 1+X
b i8I (kat) |3 & = oy ) voo 3 J
3<iZm[-]+XL])
2
k k
2 2(1-2(2) ) 1
+ (- 1‘0?).0- T fXL } (A-65a)

)
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- iZmOn(ka)

4a '"'TD- G-/ =12

==

S -

k
145X 1-2(=)
1+ %(1-1(kaA))[% L+ a ] (A-65b)

Def ine

A =m§

5 = 21}1-(@/@2 S xL<——‘———— - M (A-66)

2
k
-349X, + 8(=) (1-X)
- L o L
A, = ATRRY. (A-67)
L
k m -in/4
A = — e (A—68)
1 a Eall—XLi
A iZmen(ka)
l,r-—e 1+ AS(1-f(mkas)) (A-69)
i
@ m+1
R el V
m=1 m m

® (] m+1 (-A]) j2me _(ka)
ST e

© m i2md (ka
» Ay ) 1%}%— e n

m=1m

)
{HAOS(]-E(mkaG))}

(A-70)

r A {L(p,3/2)+Ao<SG(p,q)}
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where

G(p,q) = Z m™3/2Me 1201 _f(;q)) (A-71)
m:
en(ka)
p=—"1¢ 1/2 (A-72a)
q = kas (A-72b)

We could follow exactly the same analysis to obtain M+, except that

en(ka) * ¢n(ka)

2
= 91_% (A-73)
8(ka)

XL > Xm

These formulas produce a very good agreement with the results of
numerical integration, down to o/k=0.2. 1




APPENDIX B
SUMMARY OF WIENER-HOPF COUPLING AND SCATTERING COEFFICIENTS

The coordinate system chosen in these equations is that des-

cribed in Chapters I and II. Hence, although the results are derived

from Einarsson et al (1966), they have been transformed into our
cnordinate system.

B-1. Direct Scattering From the Rim

These coordinates are cast in the form

S i

[Ee - [ See Se¢ EQ (B-1)
S j

LE¢ LS¢9 S¢¢ E¢

Where both E° and E' are expressed by

4+,
e-1kr . .
£ == (OEe + ¢E

- ) (8-2)

¢

+ikr

where e is for ES

e'ikr is for E' .

The expressions presented in Appendix B are all asymptotic in the
sense that they are far-field and valid only far from the waveguide
mouth (kr >> 1)

, @ J (kasing ;) J_(kasind_)
S = - %l ! €,C08 nd s?he L (k;ose ) s?ne L (kzose y
n=0 i+ i s+ S
2
(1-cos8.)(1-cos8_) f
‘?Ttosel+cose ) - 2 (B-3)
i s 1-fn

(P2 170 0 ¢ O e A e

PPV P SR SIS 1




- 2i ° J!'(kasing.) J'(kasins_)
Sed = 5y €,C0S Ny, °n i’ Un s
¢ k{T+coso,)(T+cosp nZO n s M, (kcos8,) M*(kc059;7

(8-4)

r(1+cosoi)(l+coses) fg
+
LZ(cosei+coseS) ]_f%

Jn(kasines) Ja(kasinni) fo

_ 4 v s 2.
Se¢ = m nZ:] sin n¢$ sfnGSL+(kCOSQS) I;I+(ECOS€1_5 . ]-f?
n

Jﬁ(kasines) Jn(kasinei) f

4i v e n
S,n = - Y sin n¢ .
6 E(1+cosesj <1 s M;ikcoses) s1neiL+(kcoseg) ]_fg
(B-6)
Where
¢i = 7 is assumed
nL+(k)'
£ = (8-7)
n 2kaM+ik§
1 n=20
ey = . (B-8)
2 n=12,3...

It was found that Chuang et al (1975) contained several misprints.
A correction letter is reproduced on the following page.
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AP 1114 . Gal 1

Carrection to “High Frequency Scttaning from an Open-
Fuded Semi Infinite Cylinder™

C.ACHUANG,MEMBER, IFEE, CIHHARLES S, LIANG,
MEABERIFFE, AND SHUNG-WU LTE,
SENIOR MEMBER, IHEE

In the above pnpcr' , there were six sign misprints.

1) Time factor should have read exp( iwt).

2) In (1), x should have read ( x).

3 In (4), (1 + cos 0) in numerator should have read (1 -
cos 8).

4)In (7), (cos 0 + cos 83) should have read ( 1)cos 0 +
cos 8g).

S)In(1)), (@ a')should have 1ead (o ).

6) In (35), (1 +i)should have rcad (I 4).

«he above sign misprints do not affect any other
equations or numerival results.
The suthars wish to thank T. W. Johnson and D. 1. Moffatt

for Brinping some of these crrors to their attention,

CoA Cheang is with Actonntionic Pord/Wh | Palo Atte, CA. He
is noew at 592 Soliteine D Indiatantic, F1L 32903,

C. S Liang s with the Tort Worth Division, General Dy namics, Fort
Worth, I X 76101,

S. W. Feeis with the Department of Plectrical Fagineering, Univer-
sity of Winois, Urbana, 11 61801,

LCOA Chuang, C. S, Liang, and S. W Lee, IEEE Trans. Antenna
Propagat., vol. AP-23 pp, 770-776, Nov, 1975,




B8-2. Coupling of Incident Field to Wavequide Modes

With the same definition of the incident field (as in Equation
(B-2)) the axial fields within the waveguide can be represented as
follows:

8
8

A6 cos nd
nm 1 Jn(Jnmp/a) -ia 2

E.=1) 7§ e M (B-9)
z -0 me $ o J
n=0 m=1 Anms1n né J n‘vnm
€ © o Bngin ey (§r p/a) -ia' z J
Wo=f=2 1 ] T TP 2 o (B-10) |
z Yo n=0 m=1 Bﬁmcos nd n'Jnm ’
Jn(‘jnm)=0
SHEHRES
j 2
2 nm
a =0k -
nm a2
., 2
2 Jnm
a' = k -
nm a2

The top line of Equation (B-9) indicates that Eg produces
EZ with cos n¢ dependence

The bottom line of Equation (B-9) indicates that E; produces
EZ with sin n¢ dependence

o 2e i Lla) 4 (kasing,) [fﬁ (anm+k)(1-c050i)}

z - . + -
nm a na L+(kcosei) kas1n9i ]'fﬁ 2(ankacose{)

(B-11)
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» 4i" j L, (o) f
A" = - nm +17nm . n
nm : J'(kasing .) (B-12)
2 M {kcosB.) “n i 2
kanma (l+cosoi) + i ].fn
oo, 4i(k+at ) M(ar ) Jp(kasing;) f o3
nm nl L,(kcos® ) ~ kasin®; _¢2 (B-13)
(1= 2 "
Jom
2e_i"(k+a' ) M, (a! )
b n nm +' "nm , .
Bnm = - n2 W(kcos@i) Jn(kas1ne_i) .
kaama(l— TT_ﬁ)(]+Cosei)
Jnm
£2 -
n (k'“nm)(]+c°56i)

+ i (B°'4)
]_fﬁ ?(kcosoi-anm)

B-3. Radiation Patterns From an Open Waveguide

The incident field is assumed to be a single waveguide mode,
either TE or TM, with axial fields given by

. J (j.P/a) io 2z
i n'“nm nm _
EZ = Enm W cos nd e (B-15)
. J (3 p/a) ja! 2
H; =Hon n_m cosnpe ™ (B-16)
n'Jnm

The radiated field is given by




! = H
b =
LEs Coe CondlL Ve M

€ (B-17)

r 1
fEe] CBE CBH Enm J jkr
nm

A+l 23 \ .
A (-1) eqk a~cos n¢s L+(anm, Jn(%as1nqs)
0F 2Jnm L+(kcosﬁs) kasmﬁS
£ (*k) (1-cos8)
2 * 7(a_kcosa Y (8-18)
1-fn %m S
co. (-i)"+1k2azsin né M+(°ﬁm) Jn(kéiines) L
eH (k-af ) L, (kcost ) kasind ]_fg
(B-19)
(-1)™a%sin no. L, (a ) F
C : ' in® — -
¢k Jnm(1+cose§7' M+(kcosﬁsf Jn(ka51n s) 7-f§ (8-20)
s n+] '
— (-i)"" ‘e kacos nog M (al) I (kasing) .
oH 2(I+coses)(ahm-k) M+(kcoses) n 3
£ (k-ar ) (1
n -anm)( +coses) :
172 * Zkeoso_-a Y (8-21)

n




B-4. Internal Reflection and Mode Conversion

With incident field as described in Section B-3, the scattered
field is given by

€S = Inldpgp/a)  -iay,2 [RnE
L

S
TG ¢
z 2 Jn J ')

n

(B-22)

u J (j!.p/a -jat .2 nm _]
0,5 _ n‘'ng ng nE_. nH
= HZ = Z TGoT e ngs‘" n¢ lecos n¢l T
0 2 n*vng Oy '
€ MM |

(B-23)

. 2
RnE - Jnﬂk L (a )L (o) fn (k+a )(k+anz)
me, Jnm g nm %y ]_ 2k(a +an1)
(B-24)
nH _ jnlkM+(a&m)L+(anz) fn
Tmz - a(k-a’ ) 2 (B-25)
g4t %m 1-f
ka{k+a',) f
nE _ nk . n
Tmﬂ, = —-———-—;2— L+((!nm)M+((!n2) T? (8‘26)
ahg T, 2 n
2 1
nH k(k+a )M (a' )M (a nl) f (k-a )(k a )
R = n - (B-27)
mL 2 2 - 2k{a’ 5 J
n 1-f nm nz
(k anm) 1 - — n
Ing
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APPENDIX C
ELEMENTS OF DYADIC GREEN'S FUNCTION
FOR A CIRCULAR WAVEGUIDE

The dyadic electric Green's function, omitting the source-
singular term, is given by Tai (1971). It is assumed in this appen-
dix, that the azwmutha] dependence for Ey, E_, , and Hy i
cos np, and for E 0» and H_ is 51n n¢z Tﬁ1s $zimutha depen-
dence is understo%d a*d suppressea The summation over n is also

suppressed.
ml 2-2]
= o\ L Ky ken T le o
wber®R) = e m L) e (S [Fere
nm nm n
l2-z ]
; & 1 (c-1)
j 2J (J )2 k2 [ ETM]

nmn nm |

ETE PP pps pd —3 o

. . . .2
ong (g te/a)d (3 vo /a) an Jnm
-85 L ¢—7—J (Gr/ )35 (G o5/ @)

a Pe nm"s

(C-2)




2.7 2 . .

- J a_n j J (i p /a)

= _aaoonminm o, . vl _axoam Yam o, n “nn"s

G ry=ee —zﬁf‘_‘Jn(Jnmp/a)Jn(Jnmps/a) P a Jn(Jnmp/a) o
.3

. J nmmn . .
02z |anmsgn(z-zs)——§ Jﬁ(Jnmp/a)Jn(Jnmps/a)

a

2 . .
een o J (j o p/a)
<pp M “nm “n’~nm

a p

J (3, p/a)d (j p_/a)
P an 22 n*Ynm n‘nm"s
Jn(Jnmps/a)+¢¢anm n oo, -

ia J (i p/a)
An nm . 2 °n'Ynm .
-$z ——;7 Sgn(Z-zs) "Jm T Jn(Jnmos/a)

. . 3
. io_son(z-2_)j
“2p ———g S g (5 0/a)d!(5 0 /a)
a

Jn(jnmps/a)

ia_ sgn(z-z_) n j
A~ M S nm X
249 a2 Jn(Jan/a) ps

j 4
*27 =7 30 G/ 009, (G e/ 2) (C-3)
a

e w ianmlz-zsl i“nﬁlz'zs|

G ,(R,R )= —0 § € [G ] ¥ [ﬁ }
m2 s'” " 7n Ly .2 .l s 2 HTM vrs 12 2 . 2L HTE
=13 nComon (Fam? epn{dpm -0 90 lipm)

(c-4)




In e/ 2)

nJj
nm “n s
a p Jn(Jnmps/a)

ﬁHTM=55 ianmsgn(z-zs)

2 Jn(jnmpla)dn(jnmps/a)
PP

-p% 1anmsgn(z-zs) n

.2 )
nj © J (i p/a)

an am “ntdnm .
-pz 2 p ) Jn(Jnmps/a)

ia
+86 —3° sgn(z-2)3,2 31 (3pn0/a)d4 (3, 0 /2)
a

an nj Jd (3 p./a)
80 Topson(z-zg) —g 3} 3o/ a) 10—

oz j"; J'(3 p/a)d (j /a) (C-5)
-¢ _;i n*InmP/ 319 pyPs/ a -

nj'’ J (3 p./a)
nm 472 n‘“nm-s :
5 Ipldme/a) 5, |

Gyrp=PP 1anésgn(z-zs)

. . .2
ia 'sgn(z-z_)}j '
Ax o nm s’Jnm .,
-pd 2 Jp(3amP/@)d

P/ 2)

nm- s

)n2 I3 mp/a)d, (50 /)

+op ia’ -
dp 1anmsgn(z zZg o5,

UL e Ip(3mP/2) »

nm 3 91 {3 |
06 —gsgn(z-z)nj | —— In(dpmPs/ @)

an M J (3 o ./a)
+20 —5" 3 (jto/a) LS C
a S

20— J (3 P/ a) I (3 pe 7 a) (C-6)
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